Details

Progress in Adhesion Adhesives, Volume 5


Progress in Adhesion Adhesives, Volume 5


1. Aufl.

von: K. L. Mittal

197,99 €

Verlag: Wiley
Format: EPUB
Veröffentl.: 22.10.2020
ISBN/EAN: 9781119749905
Sprache: englisch
Anzahl Seiten: 480

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<p><b>A solid collection of interdisciplinary review articles on the latest developments in adhesion science and adhesives technology</b></p> <p>With the ever-increasing amount of research being published, it is a Herculean task to be fully conversant with the latest research developments in any field, and the arena of adhesion and adhesives is no exception. Thus, topical review articles provide an alternate and very efficient way to stay abreast of the state-of-the-art in many subjects representing the field of adhesion science and adhesives.</p> <p>Based on the success of the preceding volumes in this series "Progress in Adhesion and Adhesives", the present volume comprises 13 review articles published in Volume 7 (2019) of <i>Reviews of Adhesion and Adhesives</i>.The subject of these reviews fall into the following general areas.</p> <p>1. Adhesively bonded joints<br />2. Adhesives (including bioadhesives) and their applications<br />3. Nanocomposite polymer adhesives<br />4. Polymer surface modification<br />5. Wettability and surface free energy<br />6. Adhesion of bacteria.</p> <p>The topics covered include: Adhesion behavior of plasma treated steel and its alloys; debonding on demand of adhesively bonded joints; bioadhesive polymers; adhesives in the footwear industry; nanocomposite polymer adhesives; ion beam treatment of polymer surfaces to enhance adhesion; natural to artificial non-wettable surfaces and applications; plasma oxidation of polyolefins; wettability and surface free energy characterization of textiles; bioadhesive nanoformulations; laser-assisted tailoring of surface wettability; functionally graded adhesively bonded joints; adhesion of colloids and bacteria to porous media.</p>
<p>Preface xv</p> <p><b>1 Physico-Tribo-Mechanical and Adhesion Behaviour of Plasma Treated Steel and Its Alloys: A Critical Review 1<br /></b><i>Jitendra K. Katiyar and Vinay Kumar Patel</i></p> <p>1.1 Introduction 2</p> <p>1.2 Single Plasma Treatment for Improvement of Physico-Mechanical and Adhesion Properties 3</p> <p>1.3 Double Plasma Treatment for Improvement of Physico-Mechanical and Adhesion Properties 14</p> <p>1.4 Tribological Properties of Plasma Treated Steel and Its Grades 19</p> <p>1.5 Conclusions 27</p> <p>References 28</p> <p><b>2 Debonding on Demand of Adhesively Bonded Joints: A Critical Review 33<br /></b><i>Mariana D. Banea</i></p> <p>2.1 Introduction 33</p> <p>2.2 Design of Structures with Debondable Adhesives 34</p> <p>2.3 Methodologies for Adhesive Debonding on Demand 35</p> <p>2.3.1 Debonding on Demand of Adhesively Bonded Joints Using Reversible/Reworkable Adhesive Systems 35</p> <p>2.3.1.1 Reversible Adhesive Technologies Based on Diels-Alder Chemistry 36</p> <p>2.3.1.2 Supramolecular Polymers 36</p> <p>2.3.2 Electrically Induced Debonding of Adhesive Joints 37</p> <p>2.3.3 Debonding on Demand of Adhesively Bonded Joints Using Reactive Fillers 38</p> <p>2.3.3.1 Nanoparticles 38</p> <p>2.3.3.2 Microparticles 40</p> <p>2.4 Summary 44</p> <p>Acknowledgements 45</p> <p>References 45</p> <p><b>3 Chitosan-Catechol Conjugates–A Novel Class of Bioadhesive Polymers: A Critical Review 51<br /></b><i>Loveleen Kaur and Inderbir Singh</i></p> <p>3.1 Introduction 51</p> <p>3.1.1 Polymers Used for Developing Mucoadhesive Drug Delivery Systems 52</p> <p>3.1.2 Chitosan and Its Associated Problems 53</p> <p>3.2 Preparation Methods for Chitosan-Catechol Conjugates 54</p> <p>3.3 Characterization 55</p> <p>3.3.1 Fourier Transform Infrared Spectroscopy (FTIR) 55</p> <p>3.3.2 Nuclear Magnetic Resonance (NMR) 56</p> <p>3.3.3 Scanning Electron Microscopy (SEM) 57</p> <p>3.3.4 Differential Scanning Calorimetry (DSC) 57</p> <p>3.3.5 X-ray Diffraction (XRD) 57</p> <p>3.4 Properties of Chitosan-Catechol Conjugates 57</p> <p>3.4.1 Stability 57</p> <p>3.4.2 Permeation 58</p> <p>3.4.3 Mucoadhesion 58</p> <p>3.4.4 Solubility 59</p> <p>3.4.5 Antibacterial Property 59</p> <p>3.4.6 Mechanical Strength 60</p> <p>3.4.7 Biocompatibility 60</p> <p>3.4.8 Bioink for 3D Printing 60</p> <p>3.5 Applications of Chitosan-Catechol Conjugates 61</p> <p>3.5.1 Nanoparticles 61</p> <p>3.5.2 Hydrogels 62</p> <p>3.5.3 Microspheres 62</p> <p>3.5.4 Sponges 64</p> <p>3.5.5 Films 64</p> <p>3.6 Patent Updates 64</p> <p>3.7 Summary and Future Aspects 64</p> <p>Acknowledgement 65</p> <p>Conflict of Interest 65</p> <p>References 65</p> <p><b>4 Adhesives in the Footwear Industry: A Critical Review 69<br /></b><i>Elena Orgilés-Calpena, Francisca Arán-Aís, Ana M. Torró-Palau and Miguel Angel Martínez Sánchez</i></p> <p>4.1 Introduction 69</p> <p>4.2 The Footwear Industry 70</p> <p>4.2.1 Substrates and Adhesives 70</p> <p>4.2.2 Surface Treatments 73</p> <p>4.2.3 Adhesives Requirements 77</p> <p>4.2.4 Bonding Stages in Footwear Manufacturing Process 78</p> <p>4.2.5 Debonding Real Cases in Footwear 81</p> <p>4.3 Sustainable Adhesives for the Footwear Industry 82</p> <p>4.3.1 Water-Based Adhesives 82</p> <p>4.3.2 Hot-Melt Adhesives 84</p> <p>4.4 Future Trends in Footwer Adhesives 86</p> <p>4.5 Summary 88</p> <p>Acknowledgements 88</p> <p>References 89</p> <p><b>5 Nanocomposite Polymer Adhesives: A Critical Review 93<br /></b><i>S. Kenig, H. Dodiuk, G. Otorgust and S. Gomid</i></p> <p>5.1 Introduction 93</p> <p>5.2 Nanostructuring of Adhesives – Methodology 94</p> <p>5.3 Nanoparticles Types – Basic Compositions and Properties 95</p> <p>5.3.1 Nanoclays 95</p> <p>5.3.2 Nanosilica (NS) 96</p> <p>5.3.3 POSS – Polyhedral Oligomeric Silsesquioxanes 97</p> <p>5.3.4 Carbon Nanotubes (CNTs) 97</p> <p>5.3.5 Graphene Nanoplatelets (GNPs) and Expanded Graphite (EG) 99</p> <p>5.3.6 Inorganic Fullerenes (IFs) and Inorganic Nanotubes (INTs) of Tungsten Disulfide (WS2) 101</p> <p>5.4 Adhesives Types – Basic Compositions and Properties 102</p> <p>5.4.1 Epoxies 102</p> <p>5.4.2 Polyurethanes (PUs) 102</p> <p>5.4.3 Polyimides (PIs) 103</p> <p>5.4.4 Silicones 103</p> <p>5.4.5 Acrylics 104</p> <p>5.5 Nanocomposite Adhesives–Composition–Properties Relationships, Reinforcement and Toughening Mechanisms 104</p> <p>5.5.1 Introduction 104</p> <p>5.5.2 Epoxy/Nanoclay Composite Adhesives 105</p> <p>5.5.2.1 Bulk Properties 105</p> <p>5.5.2.2 Adhesive Properties 107</p> <p>5.5.3 Epoxy/Silica Nanocomposite Adhesives 108</p> <p>5.5.3.1 Bulk Properties 108</p> <p>5.5.3.2 Adhesive Properties 110</p> <p>5.5.4 Epoxy/CNT Nanocomposite Adhesives 110</p> <p>5.5.4.1 Bulk Properties 110</p> <p>5.5.4.2 Adhesive Properties 113</p> <p>5.5.5 Epoxy/POSS Nanocomposite Adhesives 115</p> <p>5.5.5.1 Bulk Properties 115</p> <p>5.5.5.2 Adhesive Properties 118</p> <p>5.5.6 Epoxy/GNPs and EG Nanocomposite Adhesives 118</p> <p>5.5.6.1 Bulk Properties 119</p> <p>5.5.6.2 Adhesive Properties 122</p> <p>5.5.7 Epoxy/WS<sub>2</sub> Nanocomposite Adhesives 125</p> <p>5.5.8 Polyurethane/POSS Nanocomposite Adhesives 126</p> <p>5.5.8.1 Bulk Properties 126</p> <p>5.5.8.2 Adhesive Properties 127</p> <p>5.5.9 PU/WS<sub>2</sub> Nanocomposite Adhesives 128</p> <p>5.5.10 Polyimide/NCs Nanocomposite Adhesives 128</p> <p>5.5.10.1 Bulk properties 128</p> <p>5.5.10.2 Adhesive Properties 129</p> <p>5.5.11 Polyimide/CNTs Nanocomposite Adhesives 129</p> <p>5.5.11.1 Bulk Properties 129</p> <p>5.5.11.2 Adhesive Properties 132</p> <p>5.5.12 PU/NCs Nanocomposite Adhesives 132</p> <p>5.5.13 Polyurethane/CNTs/GNPs Nanocomposite Adhesives 132</p> <p>5.5.13.1 Bulk Properties 132</p> <p>5.5.13.2 Adhesive Properties 133</p> <p>5.5.14 PU/WS2 Nanocomposite Adhesives 134</p> <p>5.5.15 Acrylic/Nanosilica Nanocomposite Adhesives 135</p> <p>5.5.16 Acrylic/Titania and Alumina NPs Nanocomposite Adhesives 136</p> <p>5.5.17 Acrylic/NCs Nanocomposite Adhesives 136</p> <p>5.5.18 Acrylic/POSS Nanocomposite Adhesives 136</p> <p>5.5.19 Silicone/WS<sub>2</sub> Nanocomposite Adhesives 137</p> <p>5.6 Fracture and Toughening Mechanisms 137</p> <p>5.6.1 Fracture Surfaces 138</p> <p>5.6.2 Toughening Micro and Nanomechanisms 138</p> <p>5.7 Nanocomposite Adhesives – Applications, Challenges and Opportunities 143</p> <p>5.7.1 Applications of Nanocomposite Adhesives 146</p> <p>5.7.1.1 Electronics and Nanoelectronics 146</p> <p>5.7.1.2 Aerospace 146</p> <p>5.7.1.3 Biomedical 147</p> <p>5.8 Summary 148</p> <p>References 148</p> <p><b>6 Adhesion Enhancement of Polymer Surfaces by Ion Beam Treatment: A Critical Review 169<br /></b><i>Endu Sekhar Srinadhu, Radhey Shyam, Jatinder Kumar, Dinesh P R Thanu, Mingrui Zhao and Manish Keswani</i></p> <p>6.1 Introduction 169</p> <p>6.1.1 Ion-Solid Interactions 170</p> <p>6.1.2 Computer Simulations of Ion Beam – Solid Interactions 171</p> <p>6.2 Ion Beam Treatment of Polymers 172</p> <p>6.3 Analysis Techniques to Analyze Post Ion Beam Treated Target Surfaces 172</p> <p>6.3.1 X-ray Diffraction 173</p> <p>6.3.2 Scanning Electron Microscopy 173</p> <p>6.3.3 Fourier Transform Infrared Spectroscopy 174</p> <p>6.3.4 Raman Spectroscopy 174</p> <p>6.3.5 UV Spectroscopy 175</p> <p>6.3.6 X-ray Photoelectron Spectroscopy (XPS) 175</p> <p>6.3.7 Wettability Measurements 176</p> <p>6.3.8 Atomic Force Microscopy (AFM) 177</p> <p>6.4 Biomedical Applications 178</p> <p>6.4.1 Poly(lactic acid) (PLA) 178</p> <p>6.4.2 Poly(L-lactic acid) (PLLA) 180</p> <p>6.4.3 Poly(L-lactide) (PLA), Poly(D, L-Lactide-coglycolide) (PDLG) and Poly(L-lactide-cocaprolactone) (PLC) Films 180</p> <p>6.5 Microelectronics Applications 182</p> <p>6.5.1 Bisphenol A polycarbonate (PC) 182</p> <p>6.5.2 Aluminum Films on Bisphenol A Polycarbonate (PC) 184</p> <p>6.5.3 Indium Tin Oxide (ITO) Films on Bisphenol A Polycarbonate (PC) 185</p> <p>6.5.4 Polyimide Films 187</p> <p>6.5.5 Cu/Polyimide Films 187</p> <p>6.5.6 Multiple Ion Beam Treatment of Polymers 188</p> <p>6.6 Summary 190</p> <p>References 190</p> <p><b>7 Non-Wettable Surfaces – From Natural to Artificial and Applications: A Critical Review 195<br /></b><i>Andrew Terhemen Tyowua, Msugh Targema and Emmanuel Etim Ubuo</i></p> <p>7.1 Introduction 195</p> <p>7.2 The Basic Wetting Models 198</p> <p>7.3 Non-Wettable Surfaces 200</p> <p>7.3.1 Non-Wettable Surfaces in Nature: Their Importance to Plants and Animals 200</p> <p>7.3.2 Artificial Non-Wettable Surfaces 206</p> <p>7.3.3 Preparation of Non-Wettable Surfaces 208</p> <p>7.3.4 Properties of Non-Wettable Surfaces 214</p> <p>7.4 Applications of Non-Wettable Surfaces and Challenges 217</p> <p>7.4.1 Non-Wettable Surfaces for Water Collection and Transportation 217</p> <p>7.4.2 Non-Wettable Surfaces as Self-Cleaning and Icephobic Surfaces 218</p> <p>7.4.3 Non-Wettable Surfaces for Biomedical Applications 219</p> <p>7.5 Summary and Future Prospects 220</p> <p>Acknowledgements 220</p> <p>References 221</p> <p><b>8 Plasma Oxidation of Polyolefins - Course of O/C Ratio from Unmodified Bulk to Surface and Finally to CO<sub>2</sub> in the Gas Phase: A Critical Review 233<br /></b><i>J. Friedrich, M. Jabłońska and G. Hidde</i></p> <p>8.1 Introduction 234</p> <p>8.2 Chemistry of Polyolefin Oxidation 235</p> <p>8.2.1 Binding Energies of Covalent Bonds in Polyolefins 235</p> <p>8.2.2 Thermal Oxidation and Auto-Oxidation on the Surface of Paraffins 236</p> <p>8.2.3 Decarboxylation and Emission of CO<sub>2</sub> 237</p> <p>8.2.4 Formation of Gaseous Low-Molecular Weight Products on Thermal or Photo-Oxidation in Analogy to Oxygen Plasma Treatment 238</p> <p>8.3 Processes at Polyolefin Surfaces 239</p> <p>8.3.1 Formation of Gaseous Low-Molecular Weight Products on Exposure to Oxygen Plasma 239</p> <p>8.3.2 Introduction of Oxygen-Containing Groups at the Surface of Polyolefins on Exposure to Oxygen Plasma 240</p> <p>8.3.3 Formation and Characterization of LMWOM 243</p> <p>8.3.3.1 LMWOM Formation by Fragmentation and Oxidation of Macromolecules 243</p> <p>8.3.3.2 LMWOM Formation by Re-Deposition of Fragments or Plasma Polymerization 245</p> <p>8.4 Depth Profiles at the Surface of Polyolefins 246</p> <p>8.4.1 Analytical Depth Profiles 246</p> <p>8.4.2 Measured Oxidation Depth Profiles 247</p> <p>8.4.2.1 Plasma Parameters Influencing the Depth Profile and Its Range 247</p> <p>8.4.2.2 Angle-Resolved XPS. 247</p> <p>8.4.2.3 Dynamic SIMS 247</p> <p>8.4.2.4 Sputtering 248</p> <p>8.4.2.5 Post-Plasma Oxidation 248</p> <p>8.5 Modes of the Oxidation Process at Polyolefin Surfaces on Exposure to Oxygen Plasma 249</p> <p>8.6 Summary and Conclusions 251</p> <p>References 253</p> <p><b>9 Procedures for the Characterization of Wettability and Surface Free Energy of Textiles - Use, Abuse, Misuse and Proper Use: A Critical Review 259<br /></b><i>Thomas Bahners and Jochen S. Gutmann</i></p> <p>9.1 Introduction 260</p> <p>9.2 Peculiarities of Textile Substrates 262</p> <p>9.2.1 Geometric Hierarchy 262</p> <p>9.2.2 Attempts to Model the Textile Geometry 266</p> <p>9.3 Characterization of Fabrics – Drop Tests 270</p> <p>9.3.1 Contact Angle Measurements 270</p> <p>9.3.2 Characterization by Roll-Off Angle 272</p> <p>9.3.3 Drop Penetration Tests 273</p> <p>9.3.4 Characterization of Fabrics – Wicking or Rising Height Test 277</p> <p>9.3.5 Fabric Characterization Based on The Wilhelmy Method 278</p> <p>9.4 Contact Angle Measurement on Single Fibers 279</p> <p>9.5 Methods for the Characterization of Fiber Bundles 280</p> <p>9.5.1 The Washburn Approach – Wilhelmy Wicking Method 280</p> <p>9.5.2 Inverse Gas Chromatography (IGC) 282</p> <p>9.5.3 Using IGC as an Alternative Concept to Characterize Adhesion-Related Surface Modification 283</p> <p>9.6 Summary and Concluding Remarks 284</p> <p>References 288</p> <p><b>10 Bioadhesive Nanoformulations—Concepts and Preclinical Studies: A Critical Review 295<br /></b><i>Monika Joshi, Ravi Shankar and Kamla Pathak</i></p> <p>10.1 Introduction to Nanoformulations 295</p> <p>10.2 Types of Nanoformulations 296</p> <p>10.2.1 Liposomes 296</p> <p>10.2.2 Ethosomes 297</p> <p>10.2.3 Niosomes 297</p> <p>10.2.4 Nanoparticles 298</p> <p>10.2.4.1 Polymeric Nanoparticles 298</p> <p>10.2.4.2 Lipid Nanoparticles 298</p> <p>10.2.5 Polymeric Micelles (PMs) 298</p> <p>10.2.6 Nanoemulsions 299</p> <p>10.2.7 Dendrimers 299</p> <p>10.3 Bioadhesion: Physiological and Pharmaceutical Aspects 299</p> <p>10.4 Bioadhesive Polymers 300</p> <p>10.4.1 Non-Specific Bioadhesive Polymers (Old Generation) 300</p> <p>10.4.1.1 Cationic Polymers 300</p> <p>10.4.1.2 Anionic Polymers 300</p> <p>10.4.2 Specific Bioadhesive Polymers 301</p> <p>10.4.2.1 Thiolated Polymers 301</p> <p>10.4.2.2 Lectin-Based Polymers 301</p> <p>10.5 Mechanism of Bioadhesion 302</p> <p>10.6 Bioadhesive Nanoformulations and Their Supremacy Over Other Systems 302</p> <p>10.6.1 Buccal/Sublingual Administration 303</p> <p>10.6.2 Intranasal Bioadhesive Nanoformulations for Various Therapeutic Purposes 306</p> <p>10.6.3 Ocular Administration 310</p> <p>10.6.4 Oral Administration 313</p> <p>10.6.5 Summary 318</p> <p>References 319</p> <p><b>11 Laser-Assisted Tailoring of Surface Wettability -Fundamentals and Applications: A Critical Review 331<br /></b><i>Alina Peethan, V. K. Unnikrishnan, Santhosh Chidangil and Sajan D. George</i></p> <p>11.1 Introduction 332</p> <p>11.1.1 Laser-Matter Interaction 332</p> <p>11.1.2 Wettability and Laser-Assisted Tailoring of Surface Wettability 334</p> <p>11.2 Nanosecond Laser Patterning 337</p> <p>11.3 Picosecond Laser Patterning 341</p> <p>11.4 Femtosecond Laser Patterning 344</p> <p>11.5 Applications of laser textured surfaces 350</p> <p>11.5.1 Biomedical applications 350</p> <p>11.5.2 Water harvesting 351</p> <p>11.5.3 Anti-Bacterial Activity 353</p> <p>11.5.4 Spectroscopic Applications 353</p> <p>11.5.5 Other Applications 354</p> <p>11.6 Summary 357</p> <p>Conflict of Interest 358</p> <p>Acknowledgments 358</p> <p>References 358</p> <p><b>12 Improved Mathematical Models of Thermal Residual Stresses in Functionally Graded Adhesively Bonded Joints: A Critical Review 367<br /></b><i>M. Kemal Apalak and M. Didem Demirbas</i></p> <p>12.1 Introduction 368</p> <p>12.2 Mechanical and Physical Relations 374</p> <p>12.3 Heat Transfer Model 377</p> <p>12.4 Thermal Initial and Boundary Conditions 380</p> <p>12.5 Elasticity Equations in Terms of Displacements 382</p> <p>12.6 Finite-Difference Discretization 385</p> <p>12.7 Implementation of Boundary Conditions 387</p> <p>12.8 Results 389</p> <p>12.9 Summary and Conclusions 408</p> <p>Acknowledgement 409</p> <p>References 410</p> <p><b>13 Adhesion of Colloids and Bacteria to Porous Media: A Critical Review 417<br /></b><i>Runwei Li, Changfu Wei, Hefa Cheng and Gang Chen</i></p> <p>13.1 Introduction 417</p> <p>13.2 Adhesion Theory 418</p> <p>13.2.1 Dupré Energy of Adhesion 418</p> <p>13.2.2 Lifshitz-van der Waals Forces 421</p> <p>13.2.3 Lewis Acid/Base Forces 422</p> <p>13.2.4 Hydration Forces 424</p> <p>13.2.5 Electrical Double Layer Forces 425</p> <p>13.2.6 Quantitative Structure–Activity Relationship (QSAR) Analysis 426</p> <p>13.2.7 Capillary Forces 426</p> <p>13.3 Adhesion of Colloids and Bacteria at Interfaces 428</p> <p>13.3.1 Adhesion at the Liquid-Solid Interface 428</p> <p>13.3.2 Adhesion at the Air-Water Interface 431</p> <p>13.3.2.1 Water Structure and Hydrogen Bonding 431</p> <p>13.3.2.2 Air-Water Interface Charges 434</p> <p>13.3.2.3 Impact of Surfactants 435</p> <p>13.3.2.4 Air-Water Interface in a Porous Medium 437</p> <p>13.3.2.5 Force Balance at the Air-Water Interface 438</p> <p>13.3.2.6 Impact of Air-Water Interface on Adhesion to Porous Media 439</p> <p>13.4 Adhesion Theory Implementations 440</p> <p>13.4.1 Water Saturation and Air-Water Interface in Porous Media 440</p> <p>13.4.2 Liquid-Gas-Solid Three-Phase Interface and Particle Transport 441</p> <p>13.4.3 Force Quantification 443</p> <p>13.4.4 Atomic Force Microscopy Measurements 445</p> <p>13.4.5 Linkage of Interactions and Transport 446</p> <p>13.4.6 Surfactant Attachment at the Air-Water Interface 448</p> <p>13.5 Summary 450</p> <p>Acknowledgments 450</p> <p>References 451</p>
<p><b>Kashmiri Lal Mittal</b>??was employed by the IBM Corporation from 1972 through 1993. Currently, he is teaching and consulting worldwide in the broad areas of adhesion as well as surface cleaning. He has received numerous awards and honors including the title of doctor <i>honoris causa</i> from Maria Curie-Sk??odowska University, Lublin, Poland. He is the editor of more than 130 books dealing with adhesion measurement, adhesion of polymeric coatings, polymer surfaces, adhesive joints, adhesion promoters, thin films, polyimides, surface modification surface cleaning, and surfactants. Dr. Mittal is also the Founding Editor of the journal??<i>Reviews of Adhesion and Adhesives</i>.
<p><b>A solid collection of interdisciplinary review articles on the latest developments in adhesion science and adhesives technology</b> <p>With the ever-increasing amount of research being published, it is a Herculean task to be fully conversant with the latest research developments in any field, and the arena of adhesion and adhesives is no exception. Thus, topical review articles provide an alternate and very efficient way to stay abreast of the state-of-the-art in many subjects representing the field of adhesion science and adhesives. <p>Based on the success of the preceding volumes in this series "Progress in Adhesion and Adhesives", the present volume comprises 13 review articles published in Volume 7 (2019) of <i>Reviews of Adhesion and Adhesives</i>.The subject of these reviews fall into the following general areas. <p>1. Adhesively bonded joints <p>2. Adhesives (including bioadhesives) and their applications <p>3. Nanocomposite polymer adhesives <p>4. Polymer surface modification <p>5. Wettability and surface free energy <p>6. Adhesion of bacteria. <p>The topics covered include: Adhesion behavior of plasma treated steel and its alloys; debonding on demand of adhesively bonded joints; bioadhesive polymers; adhesives in the footwear industry; nanocomposite polymer adhesives; ion beam treatment of polymer surfaces to enhance adhesion; natural to artificial non-wettable surfaces and applications; plasma oxidation of polyolefins; wettability and surface free energy characterization of textiles; bioadhesive nanoformulations; laser-assisted tailoring of surface wettability; functionally graded adhesively bonded joints; adhesion of colloids and bacteria to porous media. <p><b>Audience</b><br> This book will be valuable and useful to researchers and technologists in adhesion science, materials science, composites, nanotechnology, polymer science, biomedical/dental fields, physics, surface and colloid chemistry in academia and industry.

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €