Dietmar Gradl; Almut Köhler Prüfungen erfolgreich bestehen im Fach Tierphysiologie

Dietmar Gradl
Almut Köhler

Prüfungen erfolgreich bestehen im Fach Tierphysiologie

ulmer_s_w

utb

Inhaltsverzeichnis

Cover

Haupttitel

Die UTB-Reihe

Inhaltsverzeichnis

Über den Autor

Impressum

Reihentitel

Vorwort

1Stoffwechsel

1.1Intestinale Verdauung am Beispiel Döner Kebab

2Umformen von Energie

2.1Atmungskette und ATP-Synthase

2.2Substratketten-Phosphorylierung

2.3Querbrückenzyklus im Muskel

2.4Zilienschlag

2.5Membranpotenzial

2.6Transferfragen zum Thema Umformen von Energie

3Natriumchlorid

3.1Sinneswahrnehmung: Generierung eines Rezeptorpotenzials in Geschmackspapillen

3.2Membranphysiologie: Generierung von Ruhepotenzialen und Aktionspotenzialen

3.3Resorption – insbesondere Aufnahme von Glukose und Aminosäuren

3.4Hormone und Regulation des Wasser- und Salzhaushalts durch ADH und Aldosteron

4Nerv und Sinne

4.1Reizweiterleitung

4.2Sehen

4.3Reizunterscheidung

4.4Hören

5Kalzium

5.1Muskelfunktion

5.2Synapse

5.3Sekundärer Messenger

5.4Herz-Aktionspotenzial

5.5Blutgerinnung

5.6Zell-Zell-Adhäsion

5.7Regulation der Kalziumkonzentration durch Parathormon und Calcitonin

6Sauerstoff und Höhentraining

6.1Atmung

6.2Anpassung an die Höhe

6.3Transferfragen

7Fight and Flight

7.1Vegetatives Nervensystem

7.2Adrenalin und Noradrenalin

7.3Vergleich der Kommunikation neuronal und humoral

7.4Stress und seine Auswirkungen: Corticoid-Metabolismus

7.5Herz und Kreislauf/Regulation des Blutdrucks

7.6Transferfragen

8Fortpflanzung

8.1Beteiligte Hormone

8.2Hormonelle Regulation des Reproduktionszyklus

8.3Steuerung von Sexualhormonen

8.4Kontrazeption

8.5Therapeutischer Einsatz von Sexualhormonen

9Blut

9.1Zusammensetzung des Blutes

9.2Immunsystem

9.3Blutgerinnung

10Phosphorylierungen

10.1Phosphorylierung von Zuckern bzw. Nukleosiden

10.2Phospholipide

10.3Phosphorylierung von Aminosäuren

10.4Kinasen

11Fragen querbeet

12Übungsklausuren

12.1Klausur A

12.2Klausur B

Literaturverzeichnis

Über den Autor

Dr. Dietmar Gradl, Jahrgang 1966, studierte Biologie an der Universität Ulm. Nach seiner Diplomarbeit am Zoologischen Institut der Universität Ulm über Farbmusterbildung am Schmetterlingsflügel promovierte er 1998 in der Abteilung Biochemie der Universität Ulm über Zell-Zell- und Zell-Matrixadhäsion. Seit dieser Zeit befasst er sich mit unterschiedlichen Aspekten der Wnt-Signalkaskaden. 2001 wechselte er zusammen mit Prof. D. Wedlich von Ulm an das Zoologische Institut der Universität Karlsruhe (TH), Abteilung Zell- und Entwicklungsbiologie. 2007 erlangte er seine Venia Legendi im Fach Zoologie. Dietmar Gradl ist seit seinem Studium mit dem Unterricht tierphysiologischer Themen vertraut; erst als Wissenschaftliche Hilfskraft während seines Studiums, dann durch die Betreuung von Medizinstudenten im Praktikum „Biochemie“ an der Universität Ulm und seit seinem Wechsel nach Karlsruhe mit der Betreuung des tierphysiologischen Praktikums. Derzeit unterrichtet er Tierphysiologie in den Bachelorstudiengängen „Allgemeine Biologie“, „Angewandte Biologie“ und „Chemische Biologie“ am Karlsruher Institut für Technologie (KIT) in Vorlesungen, Praktika und Tutorien.

Almut Köhler, Ph. D., Jahrgang 1971, studierte Tiermedizin an der Tierärztlichen Hochschule Hannover. In ihrer Promotionsarbeit am Institut für Kleintierforschung in Celle befasste sie sich mit hormonellen Einflüssen auf die Gehirnentwicklung und das Verhalten bei Hühnern. 2000 promovierte sie an der Tierärztlichen Hochschule zum Ph.D. Nach einer Postdoc-Phase am Institut für Tierzucht und Tierverhalten in Mariensee (heute Friedrich-Löffler-Institut) kam sie 2002 an das Zoologische Institut der Universität Karlsruhe, Abteilung Zell- und Entwicklungsbiologie. Ihre Forschungsschwerpunkte waren Zelladhäsionsmechanismen in der Zell- und Entwicklungsbiologie, insbesondere die Rolle von Cadherinen bei der Neuralleistenzellentwicklung und in der Organogenese. Außerdem betreute sie dort zusammen mit Dr. Dietmar Gradl über viele Jahre das tierphysiologische Praktikum und die Vorlesungen zur Tierphysiologie in den Bachelorstudiengängen „Allgemeine Biologie“, „Angewandte Biologie“ und „Chemische Biologie“. Seit 2014 ist sie am Karlsruher Institut für Technologie (KIT), Stabsstelle Sicherheit und Umwelt, zentrale Tierschutzbeauftragte.

Impressum

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlages unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

© 2017 Eugen Ulmer KG

Wollgrasweg 41, 70599 Stuttgart (Hohenheim)

E-Mail: info@ulmer.de

Internet: www.ulmer-verlag.de

Produktion: primustype Hurler GmbH | v1

ISBN 978-3-8252-4570-2 (Print)

ISBN 978-3-8463-4570-2 (E-Book)

Reihentitel

Prüfungen erfolgreich bestehen

herausgegeben von

Prof. Dr. Michael Kühl und Dr. Susanne Kühl

weitere Titel in Planung:

Prüfungen erfolgreich bestehen im Fach …

bereits erschienen:

Prüfungen erfolgreich bestehen im Fach …

Vorwort

Die Tierphysiologie soll ein grundlegendes Verständnis darüber vermitteln, wie Tiere und Menschen funktionieren. Das reicht von Wechselwirkungen zwischen Organsystemen über koordinierte Funktionen von Organsystemen und Organen bis zu zellulären und molekularen Mechanismen. Über diese Themen lassen sich sehr viele, sehr umfangreiche Bücher schreiben, und es sind tatsächlich sehr gute Lehrbücher auf dem Markt. Eine Auswahl davon ist im Literaturverzeichnis aufgeführt. Wir haben nicht die Absicht, mit dem vorliegenden Buch auch nur eines dieser Lehrbücher zu ersetzen. Vielmehr soll der Wert dieses Buches darin liegen, mit einem Frage-Antwort-Spiel auf Prüfungen vorzubereiten. Auch hier können wir in diesem Buch nicht die gesamte Breite der Tierphysiologie erschöpfend erfassen. Wir freuen uns aber, wenn dieses Buch dazu anregt, weitere Frage-Antwort-Kapitel zu generieren, die Eingang finden in Lehrveranstaltungen, studentische Lernzirkel oder vielleicht in einigen Jahren in eine aktualisierte Auflage dieses Buchs.

Wir hoffen, dass wir durch die Art an Fragen nicht nur helfen, Prüfungen anhand möglicher Klausurfragen zu üben. Vielmehr wollen wir auch dazu anregen, das typische Lernen in Themen-Schubladen zu überwinden und so vernetztes Denken stimulieren.

Die Fragen in diesem Buch sind über die Jahre aus unseren Lehrveranstaltungen zur Tierphysiologie am Karlsruher Institut für Technologie entstanden. Wir profitierten beim Verfassen des Buches nicht nur von den Ideen und Grundlagen der früheren Institutsleitung, Prof. Dr. Doris Wedlich, und unseres langjährigen Kollegen, Dr. Jubin Kashef, sondern vor allem auch von den vielen Diskussionen, Rückmeldungen und Fragensammlungen der Karlsruher Studierenden. Anregungen lieferten aber auch die teilweise abenteuerlichen Antworten, die wir in unseren Klausuren zur Tierphysiologie lesen durften.

Aber die Studierenden waren auch konstruktiv an der Entstehung dieses Buchs beteiligt. Besonders hervorzuheben sind hier Caroline Mertes und Clara-Maria Ell, die bei der Erstellung der Endversion noch viele wichtige Hinweise gaben und so halfen, das Manuskript zu verbessern. Unserer Kollegin Nadine Gretz danken wir für die kritische Durchsicht des Textes und das Aufdecken noch so mancher Fehler. Ein extra Dankeschön geht an die Herausgeber der Buchreihe, Dr. Susanne und Prof. Michael Kühl für die Möglichkeit zu diesem Buch, sowie an Sabine Mann vom Verlag Eugen Ulmer für ihre hervorragende Unterstützung und Ermutigung sowie ihre Nachsicht, wenn wir, die Autoren, unseren Zeitrahmen etwas zu großzügig ausschöpften.

Karlsruhe, im November 2016

Dietmar Gradl, Almut Köhler

1Stoffwechsel

Die allgemeine „Energiewährung“ aller Zellen ist Adenosintriphosphat, ATP. Dabei steckt die nutzbare Energie in den Phosphat-Phosphat-Bindungen dieses Energieträgers, und nach hydrolytischer Spaltung entstehen die energieärmeren Nukleotide Adenosindiphosphat (ADP) bzw. Adenosinmonophosphat (AMP). Ziel des katabolen Stoffwechsels ist es, genügend ATP herzustellen. Die ATP-Synthese erfolgt entweder direkt bei sogenannten Substratketten-Phosphorylierungen oder indirekt über Redox-Reaktionen mit anschließender Oxidation der Reduktionsäquivalente NADH/H+ und FADH2 in der Atmungskette. Die Lieferanten der Reduktionsäquivalente sind dabei hauptsächlich die Energiespeicher Kohlenhydrate und Fette. Diese Energiespeicher gilt es durch Nahrungsaufnahme aufzufüllen. Da der bei Weitem größte Teil der Kohlenhydrate und Fette in der Nahrung in Form komplexer polymerer Verbindungen vorliegt und die Struktur der Resorptionsepithelien eine Aufnahme großer polymerer Verbindungen in der Regel nicht erlaubt, werden im Zuge der intestinalen Verdauung, also im Magen-Darm-Trakt, die Polymere in Monomere zerlegt (s. Abb. 1.1).

kap001_abb001

Abb. 1.1 Der intestinale Verdauungsvorgang zerlegt die komplexen Nahrungsmoleküle in ihre Monomere. Zur Energiegewinnung werden die Monomere intrazellulär verdaut. Dabei werden die Kohlenstoffe zu CO2 aufoxidiert und O2 zu H2O reduziert.

Fragen und Antworten

Das Kapitel Stoffwechsel umfasst:

  • Intestinale Verdauung am Beispiel Döner Kebab

1.1Intestinale Verdauung am Beispiel Döner Kebab

Mit einer ausgewogenen Mahlzeit nehmen wir die drei Grundbestandteile der Nahrung, Kohlenhydrate, Fette und Aminosäuren, als komplexe polymere Verbindungen auf. Im Verdauungskanal werden diese komplexen Polymere in ihre Bestandteile zerlegt, um als Monomere resorbiert zu werden. Triacylglyceride werden zu Diacylglyceriden, Monoacylglyceriden, freien Fettsäuren und Glycerin abgebaut. Polymere Kohlenhydrate werden in monomere Hexosen wie Glukose, Fruktose und Galaktose zerlegt, und Proteine werden zu Tripeptiden, Dipeptiden und vor allem zu freien Aminosäuren zersetzt.

Während die glykosidischen Bindungen der Kohlenhydrate für einen enzymatischen Abbau gut zugänglich sind, sind das Aufbrechen der Esterbindungen der Triacylglyceride, sowie das Aufbrechen der Peptidbindungen der Proteine aus unterschiedlichen Gründen deutlich erschwert. Triacylglyceride sind als lipophile Substanzen im wässrigen Milieu des Verdauungskanals unlöslich und damit räumlich von den im wässrigen Milieu befindlichen hydrophilen Lipasen getrennt. Für eine effiziente Verdauung müssen die Fette also erst in räumliche Nähe zu den Lipasen gebracht werden. Proteine zeichnen sich durch eine komplexe dreidimensionale Struktur aus, mit der Konsequenz, dass bei globulären Proteinen der weitaus größte Anteil an Peptidbindungen im Innern des gefalteten Proteins und damit unzugänglich für Peptidasen liegt. Auch hier muss zuerst gewährleistet werden, dass die Verdauungsenzyme an ihr Substrat gelangen.

Darüber hinaus bestehen polymere Kohlenhydrate wie Stärke aus mehreren tausend Monomeren, Proteine häufig aus über tausend Aminosäuren. Da die Verweildauer im Magen-Darm-Trakt zeitlich begrenzt ist, muss das Aufbrechen möglichst aller glykosidischen Bindungen bzw. Peptidbindungen sehr effizient erfolgen.

Schließlich sollen die monomeren Bestandteile, also Fettsäuren, Aminosäuren und Kohlenhydrate möglichst komplett aus dem Darmlumen ins Blut transportiert werden, teilweise entgegen der Konzen­trationsgradienten.

Die anatomischen Anpassungen und biochemischen Mechanismen unseres Verdauungskanals, die eine effiziente Nahrungsaufnahme überhaupt ermöglichen, sind vielgestaltig und reichen von angehängten Drüsen wie Leber/Galle oder Bauchspeicheldrüse über unterschiedliche pH-Werte in verschiedenen Abschnitten des Magen-Darm-Trakts und Oberflächenvergrößerungen am Resorptionsepithel des Dünndarms bis zu fein justierten Transportmechanismen für die Resorption der Monomere am Dünndarmepithel.

Am Beispiel eines Döner Kebabs werden wir im Folgenden die Verdauung der Kohlenhydrate, der Proteine und der Fette im Einzelnen durchnehmen.

1 Skizzieren und beschriften Sie die Anatomie unseres Verdauungssystems inklusive der akzessorischen Drüsen.

Die Nahrung gelangt über Mund und Speiseröhre in den Magen. Der Pförtner (Pylorus) kontrolliert die Weiterleitung in den Zwölffingerdarm (Duodenum), aus dem der Nahrungsbrei dann weiter über Dünndarm, Dickdarm und Enddarm zum After transportiert wird. Die wesentlichen akzessorischen Drüsen sind prägastrisch, also vor dem Magen gelegen, wie die Speicheldrüsen (Mundspeicheldrüsen und Ohrspeicheldrüse) sowie postgastrisch wie die Bauchspeicheldrüse (Pankreas) und die Leber mit Gallenblase (s. Abb. 1.2).

kap001_abb002

Abb. 1.2 Anatomie des Verdauungssystems und der akzessorischen Drüsen.

2  Warum schmeckt das Fladenbrot erst nach längerem Kauen süß?

Grundbestandteil des Fladenbrots ist das polymere Kohlenhydrat Stärke. Dieses besteht aus den Komponenten Amylose und Amylopektin, wobei Amylose ein Polymer aus α-1,4-verknüpfter Glukose, Amy­lopektin ein verzweigtes Polymer aus α-1,4- und α-1,6-verknüpfter Glukose darstellt. Die drei großen Speicheldrüsen im Mund – Ohr­speicheldrüse, Unterkieferspeicheldrüse und Unterzungenspeicheldrüse – sezernieren in ihrem Speichelsekret unter anderem das Enzym α-Amylase. Dieses Enzym spaltet α-1,4-glykosidische Bindungen innerhalb eines Moleküls. Als Reaktionsprodukte entstehen aus dem Abbau von Amylose und Amylopektin neben verknüpften Oligosacchariden auch α-1,4-Glukose-Dimere, also Maltose. Maltose bindet an die Zuckerrezeptoren an den Geschmacksknospen der Zunge und vermittelt den Eindruck „süß“. Aus dem Abbau von Amylopektin entstehen darüber hinaus auch verzweigte Oligosaccharide mit α-1,4- und α-1,6-glykosidischen Bindungen.

3  Warum sezerniert auch die Bauchspeicheldrüse Amylase, obwohl doch aus den Mundspeicheldrüsen schon Amylase sezerniert wurde?

Der Ductus pancreaticus, also die Verbindung der Bauchspeicheldrüse mit dem Verdauungskanal, mündet in den Zwölffingerdarm. Der Nahrungsbrei hat also bereits den Magen passiert. Das saure Milieu im Magen hat auch die Amylase der Mundspeicheldrüsen genau wie die mit der Nahrung aufgenommenen Proteine denaturiert und durch die Protease Pepsin angedaut. Damit wird im Magen die Kohlenhydratverdauung gestoppt. Erst durch die Amylasen des Pankreas wird die Kohlenhydratverdauung wieder aufgenommen.

4  Warum erfolgt die Resorption von Glukose im Symport mit Na+, die Resorption von Fruktose aber nicht?

Ausschlaggebend für die Art, wie die unterschiedlichen Hexosen von den Darmepithelzellen aufgenommen werden, sind die Konzentrationsverhältnisse. Die intrazelluläre Konzentration von Glukose ist hoch, sogar höher als die Glukosekonzentration im Blut und deutlich höher als die Glukosekonzentration im Darmlumen. Somit kann Glukose aus den Darmepithelzellen passiv ins Blut diffundieren, muss aber, um vom Darmlumen in die Epithelzelle aufgenommen zu werden, entgegen seines Konzentrationsgradienten transportiert werden. Dies geschieht im Symport mit Na+ (s. Abb. 1.3). An der apikalen Seite wird Glukose über SGLT-Transporter (Sodium/Glukose-Transporter) aufgenommen. Im Darm ist dies SGLT-1, ein Transportprotein, das zwei Natriumionen zusammen mit einem Glukosemolekül aus dem Darmlumen in die Darmepithelzelle einschleust. Die intrazelluläre Glukosekonzentration kann damit deutlich höher sein als die Glukosekonzentration im Darmlumen und im Blut. Die intrazelluläre Na+-Konzentration wird durch die permanente Aktivität der Na+/K+-ATPase an der basalen Seite auf ca. 15 mM gehalten, sodass ein permanenter Natriumgradient über der apikalen Seite der Enterozyten bestehen bleibt. An der basalen Seite strömt Glukose passiv aus der Zelle. Dies geht nur über spezifische Proteine, im Darm hauptsächlich über GLUT2.

kap001_abb003

Abb. 1.3 Auf der basalen Seite der Enterozyten sorgt die Na+/K+-ATP­ase dafür, dass intrazellulär die Natriumkonzentration sehr gering bleibt. Damit besteht an der apikalen Seite ein Na+-Gradient, Na+ strömt vom Darmlumen in die En­terozyten. Dies geht vorwiegend durch zur Familie der SGLT gehörende Transportproteine im Symport mit Glukose (Glc). Damit steigt die intrazelluläre Glukosekonzentration so hoch, dass an der basalen Seite Glukose passiv durch Kanalproteine der GLUT-Familie ins Blut aufgenommen wird.

Die Konzentrationsverhältnisse für Fruktose sehen anders aus. Die intrazelluläre Fruktosekonzentration ist sehr gering, denn diese Hexose wird schnell und effizient in Glukose umgewandelt. Damit bleibt ein Konzentrationsgradient zwischen Darmlumen und Epithelzelle bestehen, und Fruktose kann mit dem Gradienten in die Zelle diffundieren.

Auf der basalen Seite der Enterozyten sorgt die Na+/K+-ATPase dafür, dass intrazellulär die Natriumkonzentration sehr gering bleibt. Damit besteht an der apikalen Seite ein Na+-Gradient, Na+ strömt vom Darmlumen in die Enterozyten. Dies geht vorwiegend durch zur Familie der SGLT gehörende Transportproteine im Symport mit Glukose (Glc). Damit steigt die intrazelluläre Glukosekonzentration so hoch, dass an der basalen Seite Glukose passiv durch Kanalproteine der GLUT-Familie ins Blut aufgenommen wird.

5  Warum wird die Zellulose des Salatblattes als Ballaststoff unverdaut ausgeschieden?

Wie Amylose ist auch Zellulose ein linear 1,4-verknüpftes Polymer aus Glukose. Der einzige Unterschied zur Amylose ist, dass die 1,4-Bindung in Zellulose in der β-Konformation vorliegt. Zellulose ist damit ein Polymer aus β -1,4-verknüpfter Glukose. Unsere Amylasen können ausschließlich α-1,4-glykosidische Bindungen spalten; die β-1,4-Bindung stellt für sie kein Substrat dar. Tatsächlich gibt es keine höheren Tiere, die entsprechende Enzyme exprimieren. Um die β-1,4-glykosidischen Bindungen aufzubrechen, sind selbst herbivore Tiere wie die Kuh oder das Kaninchen auf eine Symbiose mit Mikroorganismen angewiesen.

Das Fehlen eigener Enzyme für den Abbau β-1,4-glykosidischer Bindungen, einhergehend mit der Symbiose mit Mikroorganismen, erklärt die anatomischen Anpassungen herbivorer Tiere auf ihre Ernährung. Diese anatomische Anpassung kann wie bei Wiederkäuern in einem mehrkammerigen Magen liegen, sodass die Verdauung der Zellulose prägastrisch erfolgt. Sie kann sich aber auch in der Ausbildung einer postgastrischen Gärkammer manifestieren – meist in Form einer massiven Vergrößerung des Blinddarms. Eine postgastrische Verdauung geht dabei meist mit Koprophagie einher, also der Wiederaufnahme eines mithilfe der symbiotischen Mikroorganismen im Blinddarm produzierten Blinddarmkots.

6 Die Proteinverdauung beginnt im sauren Milieu im Magen. Wie kommt es zur Ansäuerung und wozu dient der saure pH?

Für die Ansäuerung des Magensaftes sind spezialisierte Zellen der Magenwand verantwortlich: die Belegzellen. Diese Zellen sezernieren Salzsäure und senken damit den pH-Wert des Chymus auf bis zu pH 1, was dem pH-Wert einer 0,1-molaren Salzsäurelösung entspricht. Das Ansäuern hat zweierlei wesentliche Aufgaben. Zum einen dient es dem Infektionsschutz, da im sauren Milieu säurelabile Mikroorganismen abgetötet werden, zum anderen werden Wechselwirkungen zwischen Aminosäureresten aufgebrochen, wodurch die Nahrungsproteine denaturieren. Erst jetzt können Endopeptidasen wie Pepsin in räumliche Nähe zu ihrem Substrat, den Peptidbindungen innerhalb der Proteine gelangen und die Hydrolyse dieser Peptidbindungen katalysieren.

Als Konsequenz auf dieses saure Milieu im Magen hat sich die Endopeptidase Pepsin evolutionär so angepasst, dass sie ihr pH-Optimum im stark sauren Milieu hat.

Eine weitere Konsequenz des sauren Milieus ist, dass die Zellen der Magenwand von einer Schutzschicht umgeben sind. Dieser „Magenschleim“ besteht aus polymeren Kohlenhydraten, die verhindern, dass die Oberflächenproteine der Magenepithelzellen denaturieren und die Zellen absterben.

7 Die Proteinverdauung wird durch die Endopeptidasen des Pankreas im leicht alkalischen pH-Wert des Zwölffingerdarms (Duodenum) fortgesetzt. Wie kommt es zur Veränderung des pH-Werts? Wie werden Trypsin und Chymotrypsin aktiviert?

Die Bauchspeicheldrüse sezerniert nicht nur Verdauungsenzyme, sondern auch Bicarbonat. Dieses Bicarbonat im Pankreassekret neutralisiert die Salzsäure des Magensafts. Über autonome nervöse Regulationsmechanismen am Pylorus (Pförtner) wird verhindert, dass das Duodenum übersäuert. pH-Sensoren am Zwölffingerdarm erlauben den Muskeln des Pförtners nur kurzzeitig zu öffnen, und zwar dann, wenn der pH-Wert im Zwölffingerdarm neutral bis leicht basisch ist. Somit wird gewährleistet, dass der saure Chymus kontrolliert in den Zwölffingerdarm gelangt und die Darmepithelzellen nicht schädigt.

Mit dem Pankreassaft werden die Endopeptidasen Trypsin und Chymotrypsin als inaktive Vorstufen Trypsinogen und Chymotrypsinogen sezerniert. Aus diesen inaktiven Vorstufen entstehen erst im Duodenum durch limitierte Proteolyse die aktiven Enzyme. Limitierte Proteolyse heißt, dass ein Teil der Peptidkette der inaktiven Vorstufen durch die Aktivität von Endopeptidasen abgespalten wird. Erst dann können sich die Pankreaspeptidasen in aktive Enzyme falten. Dieser Mechanismus verhindert, dass Trypsin und Chymotrypsin bereits im exokrinen Pankreas und im Ductus pancreaticus aktiv sind und die Proteine der Bauchspeicheldrüse und des Pankreasgangs verdauen und damit die Organe schädigen oder gar zerstören. Bei den Endopeptidasen, die Trypsin und Chymotrypsin aktivieren, handelt es sich um Trypsin und Elastase.

8 Wo und wie erfolgt die Abspaltung einzelner Aminosäuren? Warum ist die Vorverdauung durch Endopeptidasen essenziell?

Die vom Magen und Pankreas produzierten proteinverdauenden Enzyme Pepsin, Trypsin und Chymotrypsin sind Endopeptidasen, d. h. als Reaktionsprodukte entstehen Peptide. Unser Resorptionsepithel am Dünndarm nimmt bevorzugt freie Aminosäuren auf. Zu einem geringeren Anteil werden auch Dipeptide und Tripeptide resorbiert. Die Abspaltung einzelner Aminosäuren aus einem Peptid erfolgt von beiden Enden her, dem Aminoterminus und dem Carboxyterminus. Entsprechend sezerniert unser Dünndarmepithel Aminopeptidasen und Car­boxypeptidasen. Diese Exopeptidasen katalysieren also die Abspaltung freier Aminosäuren von den Enden der Peptide.

Für ein effizientes Arbeiten der Exopeptidasen ist eine Vorverdauung der Nahrungsproteine durch Endopeptidasen unerlässlich, denn wenn Proteine zur Resorption in freie Aminosäuren zerlegt werden müssen und die Abspaltung von Aminosäuren nur von den freien Enden erfolgt, so wird die Effizienz der Verdauung deutlich erhöht, wenn die Anzahl freier Enden erhöht wird. Genau dies ist die Aufgabe der Endopeptidasen. Wenn beispielsweise ein 300 Aminosäuren großes Protein in 30 Peptide zerlegt wird, so erhöht sich die Anzahl der Angriffspunkte für Exopeptidasen von zwei auf sechzig.

9 Vergleichen Sie die Resorption der Aminosäuren mit der Resorption von Glukose.

Der prinzipielle Aufnahmemechanismus von Aminosäuren und Glukose ist sehr ähnlich. Sowohl Aminosäuren als auch Glukose werden sekundär aktiv im Symport mit Natrium-Ionen resorbiert. In beiden Fällen stammt die Energie, die benötigt wird, um Monomere entgegen ihres Konzentrationsgradienten zu resorbieren, also von der Aktivität der Na+/K+-ATPase. Dieses Enzym, das an den Epithelzellen baso-lateral lokalisiert ist, hält die intrazelluläre Natriumkonzentration gering, sodass permanent ein Natriumgradient zwischen Darmlumen und Zellinnerem besteht. Für die Resorption von Glukose wird dieser Natriumgradient genutzt, indem er Natrium durch die SGLT-Transportproteine nur einströmen lässt, wenn gleichzeitig Glukose in die Zelle eintritt. Ähnliches gilt auch für die Resorption von Aminosäuren, nur dass hier anstatt des SGLT-Transportproteins Aminosäuren-Transportproteine die Energie des Natriumgradienten nutzen. Dabei gibt es vier unterschiedliche Aminosäuren-Transportproteine, die jeweils für einen Teil der Aminosäuren verantwortlich sind. Diese Aminosäuren-Transportproteine sind gruppenspezifisch, z. B. für saure oder basische Aminosäuren.

10 Was sind Micellen und wie kommen sie zustande?

Micellen sind sogenannte „Fetttröpfchen“, aber nicht zu verwechseln mit einem „Fettauge“, wie es in der Suppe schwimmt. Wesentlich für Micellen ist der amphiphile Charakter der Micellen-bildenden Fette. Dieser amphiphile Charakter sorgt dafür, dass sich im Innern der Micelle die lipophilen Fettsäurereste befinden und außen, also hin zum wässrigen Milieu, die hydrophilen Kopfgruppen. Diese hydrophilen Kopfgruppen können die Phosphatgruppen der Phospholipide sein, aber auch die polaren Komponenten der Gallensalze.

Bei fettreicher Nahrung dominieren Triacylglyceride. Diese sind per se nicht in der Lage, Micellen zu bilden. Die amphiphilen Fette, die wir als Bestandteile der Membranen zu uns nehmen, reichen nicht aus, die große Menge an Triacylglyceriden zu emulgieren. Zur effizienten Micellenbildung sezerniert die Galle die in der Leber produzierten Gallensalze in den Zwölffingerdarm. Gallensalze sind Cholesterinderivate, die durch eine Sulfatgruppe amphiphilen Charakter aufweisen (s. Abb. 1.4). Sie lagern sich zwischen die Triacylglyceride ein und führen spontan zur Micellenbildung.

kap001_abb004

Abb. 1.4 Cholesterin wird in der Leber zu Gallensalzen, wie z. B. Cholsäure, umgewandelt. Die wesentlichste Veränderung ist dabei der Einbau hydrophiler Gruppen, wie mehrere alkoholische Gruppen, eine Ketogruppe und ein Sulfat-Rest. Dies verstärkt den amphiphilen Charakter und fördert die Micellenbildung.

Die Micellen sind für die Fettverdauung unerlässlich, denn damit werden Angriffspunkte für die enzymatische Aktivität der Pankreaslipasen geschaffen. Erst so kann das hydrophile Enzym Lipase überhaupt in räumliche Nähe zu seinem Substrat, den Esterbindungen zwischen Glycerin und Fettsäuren gelangen. Die Pankreaslipasen spalten aus den Triacylglyceriden freie Fettsäuren, und es verbleiben Diacylglyceride. Diese Diacylglyceride wiederum verstärken die Micellenbildung und der Fettverdauungsprozess kommt in Gang. Freie Fettsäuren, Monoacylglyceride und Glycerin werden dann von den Enterozyten resorbiert.

Entscheidend für die Micellenbildung ist also die Sekretion von Gallensalzen. Tatsächlich werden pro Tag etwa 2–4 Gramm Gallensalze für die Fettverdauung benötigt. Dabei werden aber nur einige Hundert Milligramm Gallensalze pro Tag neu synthetisiert, denn der weitaus größte Teil der Gallensalze pendelt im enterohepatischen Kreislauf zwischen Leber und Darm, d. h. er wird von der Leber über die Galle in den Zwölffingerdarm sezerniert und gelangt nach Resorption im Dünndarm über die Pfortader zurück in die Leber.

11 Wie werden resorbierte Fette vom Blut abtransportiert?

Fette sind als lipophile Substanzen im Blut prinzipiell unlöslich. Dies gilt sowohl für Triacylglyceride als auch für amphiphile freie Fettsäuren und Cholesterin und seine Derivate. Triacylglyceride, die im Dünndarmepithel aus den resorbierten freien Fettsäuren, Monoacylglyceriden, Diacylglyceriden und Glycerin neu synthetisiert wurden, werden von den Epithelzellen in Lipoproteinpartikel, sogenannte Chylomi-kronen, verpackt und gelangen über die Pfortader zur Leber. Hier wird ein Teil der Chylomikronen „umgepackt“ und die Fette als „low density Lipoproteinpartikel“ (LDL), „very low density Lipoproteinpartikel“ (VLDL), „intermediate density Lipoproteinpartikel“ (IDLP) und „high density Lipoproteinpartikel“ (HDL) in den Körperkreislauf entlassen. Der wesentliche Unterschied zwischen den verschiedenen Arten an Lipoproteinpartikeln ist ihre Ausstattung mit Lipoproteinen, zum Beispiel Apolipoproteinen, und ihr Cholesteringehalt.

Chylomikronen sind die größten dieser Lipoproteinpartikel und entstehen im Darmepithel. VLDL entstehen in der Leber und transportieren hauptsächlich die dort synthetisierten Triacylglyceride. LDL entstehen in der Leber und transportieren hauptsächlich Cholesterin und seine Derivate. Auch HDL entstehen vorwiegend in der Leber, dienen aber hautsächlich dem Rücktransport von Cholesterin und seinen Derivaten von der Peripherie zur Leber. Die Proteine in den Lipoproteinpartikeln sind nicht nur dafür da, die Lipide in einen transportfähigen Zustand zu bringen, sondern dienen auch als „Adressaufkleber“ dazu, die Lipide für ihren Bestimmungsort zu markieren.

Neben dem Transport in Lipoproteinpartikeln können amphiphile Lipide auch unspezifisch an Proteine gebunden über das Blut verteilt werden. Der zugrunde liegende Mechanismus ist, dass sehr viele Proteine auch hydrophobe Bereiche aufweisen, an die sich Fettsäuren anlagern können. Das in unserem Körper wesentlichste fetttransportierende Protein ist Albumin.

12 Was ist der enterohepatische Kreislauf und wieso ist dieser Kreislauf bei der Resorption der Fette entscheidend?

Enterohepatischer Kreislauf bedeutet, dass Moleküle vom Darmepithel resorbiert werden, über das Pfortadersystem in die Leber gelangen, dort aufgenommen werden und über die Galle zurück in das Duodenum sezerniert werden, ohne in den großen Körperkreislauf zu gelangen. Diesen Weg nimmt beispielsweise Amanitin, das Gift des grünen Knollenblätterpilzes. Dieses Gift inhibiert die RNA-Polymerase, bringt also die Neusynthese von RNA zum Erliegen. Die Gefährlichkeit dieses Giftes liegt darin, dass es nur äußerst ineffizient ausgeschieden wird, weil es über den enterohepatischen Kreislauf permanent zwischen Leber und Darm pendelt und so nach und nach die Leberzellen abtötet.

Für die Resorption von Fetten ist der enterohepatische Kreislauf insofern von besonderer Bedeutung, als ein Großteil der Gallensalze genau diesen Weg nimmt und im Laufe eines Tages vier- bis zwölfmal zwischen Leber und Darm zirkuliert. Gallensalze sind für das Emulgieren der Nahrungsfette und damit für eine effiziente Fettverdauung unerlässlich. In diesem zirkulierenden System, inklusive dem Speicherort Gallenblase befinden sich insgesamt etwa 2–4 Gramm Gallensalze. Sinn dieses enterohepatischen Kreislaufs ist es also dafür zu sorgen, dass permanent genügend Gallensalze zur Fettresorption zur Verfügung stehen, mit minimalisierten Verlusten durch Ausscheidung und ohne den Cholesterinpool des Körpers zu sehr zu belasten.

13 Welche Rolle spielen Mund, Magen, Leber und Pankreas bei der Verdauung von Kohlenhydraten, Proteinen und Fetten?

a) Kohlenhydrate

Das wesentlichste polymere Kohlenhydrat, das wir mit der Nahrung zu uns nehmen, ist Stärke, also α-1,4-(Amylose) und α-1,4-, α-1,6- (Amylopektin) verknüpfte Glukose. Im Mund wird dieses Polymer durch die Amylase im Speichel teilweise verdaut und als Reaktionsprodukt entsteht das Disaccharid Maltose. Im Magen stoppt die Kohlenhydratverdauung, denn durch das saure Milieu denaturiert die Amylase und durch die Endopeptidase Pepsin wird die Amylase fragmentiert. Zwar sind glykosidische Bindungen generell säurelabil, aber der pH-Wert im Magen ist nicht hinreichend sauer, um bei physiologischen Temperaturen die glykosidischen Bindungen zu spalten.

Im Duodenum wird der saure Magensaft durch Bicarbonat aus der Bauchspeicheldrüse neutralisiert. Amylasen im Pankreassekret setzen die Arbeit der Speichelamylasen fort, sodass die Polymere der Stärke weitestgehend in Dimere zerlegt werden. Disaccharidasen werden von Darmepithelzellen sezerniert und zerlegen die Dimere in monomere Glukose. Im Symport mit Na+ wird Glukose sekundär aktiv aufgenommen. Die Leber spielt hier erst als Speicherort der körpereigenen Glukose-Polymere (Glykogen) eine Rolle.

b) Proteine

Die Verdauung der Proteine beginnt im Magen. Durch das saure Milieu werden die Nahrungsproteine denaturiert, d. h. die Tertiärstruktur wird aufgebrochen. Dies erlaubt der Endopeptidase Pepsin, ihr Sub­strat „Peptidbindung“ im Inneren des Proteins zu erkennen und zu spalten. Bereits im Magen werden Proteine also in kleine Fragmente zerlegt.

Mit dem Eintritt in das Duodenum verliert Pepsin seine Aktivität, denn durch das Bicarbonat des Pankreassekrets steigt der pH-Wert ins leicht Alkalische. Das Pankreas sezerniert die Endopeptidasen Chymotrypsin und Trypsin. Wie bei Pepsin werden diese Endo­peptidasen als inaktive Vorstufen (Chymotrypsinogen, Trypsinogen) sezerniert und erst durch limitierte Proteolyse in aktive Enzyme umgewandelt. Trypsin und Chymotrypsin sind ebenfalls Endopeptidasen und zerteilen die vorverdauten Proteine weiter in kleinere Peptide. Exopeptidasen hy­drolysieren diese Peptide von beiden Enden her: Am N-Terminus greifen Aminopeptidasen an, am C-Terminus Carboxypeptidasen. Beide Exopeptidasen werden vom Darmepithel sezerniert.

Die freien Aminosäuren (etwas weniger auch Di- und Tripeptide) werden über gruppenselektive Transportproteine im Symport mit Na+ von den Epithelzellen des Dünndarms resorbiert und gelangen über die Pfortader zur Leber. Hier werden die Aminosäuren weiter verstoffwechselt und unter anderem zur Synthese unseres Aminosäure-Reservoirs und -Transportproteins Albumin verwendet.

c) Fette

Die Fettverdauung startet erst im Darm. Vorher, in Mund und Magen, liegen Triacylglyceride aufgrund ihres lipophilen Charakters in relativ großen Fetttropfen vor. Je größer die Fetttropfen sind, desto geringer ist die Angriffsmöglichkeit von Lipasen, denn diese sind als Verdauungsenzyme hydrophil und damit in den Fetttropfen unlöslich. Die Fettverdauung beginnt mit der Emulgierung der Nahrungsfette durch die im Gallensekret gelösten Gallensalze. Dabei bilden sich Micellen, also sehr kleine Fetttröpfchen. Dies schafft eine hinreichend große Angriffsfläche für die Pankreaslipase. Diese Lipase spaltet Esterbindungen der Triacylglyceride und zerlegt sie somit in Diacylglyceride, Monoacylglyceride, Glycerin und freie Fettsäuren.

Als lipophile Substanzen können die Fettsäuren, Monoacylglyceride und Diacylglyceride die Membran der Endothelzellen des Dünndarms leicht passieren und werden innerhalb der Endothelzellen wieder zu Triacylglyceriden zusammen gebaut. Ebenfalls innerhalb der Endothelzellen werden die Triacylglyceride in ihre Transportform „Chylomikronen“ verpackt. Diese Chylomikronen sind Lipoproteinpartikel, also Konglomerate aus Triacylglyceriden und Proteinen, die es erlauben, die resorbierten Fette effizient im Blut über das Pfortadersystem zur Leber zu transportieren. Ein Teil der Lipoproteinpartikel wird in der Leber „entpackt“. Die Fette werden mit anderen Lipoproteinen versehen und als „very low density Lipoproteinpartikel“ (VLDL), „low density Lipoproteinpartikel“ (LDL) oder „high density Lipoproteinpartikel“ (HDL) zur Versorgung der Peripherie in den großen Körperkreislauf eingebracht.

14 Erläutern Sie die Rollen von Cholecystokinin, Gastrin, Sekretin und Gastroinhibitorischem Peptid (GIP) bei der autonomen hormonellen Regulation der Verdauung.

Gastrin, ein Peptidhormon, wird in spezialisierten Zellen des Magens in der Nähe des Pförtners produziert. Die Ausschüttung des Hormons wird induziert durch eine mechanische Dehnung des Magens, durch Proteine und Peptide in der Nahrung, sowie durch nervöse und hormonelle (Gastrin-releasing Hormon) Stimulation ausgehend vom Nervus vagus. Die Produktion von Salzsäure und damit der sinkende pH-Wert des Magensafts nach einer Mahlzeit unterdrückt die Ausschüttung dieses Hormons. Darüber hinaus wird die Ausschüttung auch noch durch Sekretin und GIP inhibiert.

Der Hauptwirkungsort von Gastrin ist der Magen. Hier wirkt es fördernd auf die Verdauung, stimuliert also die Produktion von Salzsäure in den Belegzellen, die Produktion von Pepsinogen in den Hauptzellen sowie die glatte Muskulatur zur besseren Durchmischung des Nahrungsbreis.

Gelangt der Nahrungsbrei in den Zwölffingerdarm, wird dort (und auch am proximalen Dünndarm) aus spezialisierten enteroendokrinen Zellen das Peptidhormon Cholecystokinin (CCK) sezerniert. Hauptzielorgane dieses Peptidhormons sind die Gallenblase und die Bauchspeicheldrüse (s. Abb. 1.5). Beide Organe werden stimuliert, ihr Sekret in das Darmlumen zu sezernieren. Aus der Gallenblase gelangen so Gallensalze zur Fettverdauung in den Darm, aus dem Pankreas Peptidasen, Amylasen und Lipasen zusammen mit Bicarbonat. Außerdem fördert Cholecystokinin die Darmperistaltik und inhibiert in einem negativen Rückkopplungsmechanismus die Ausschüttung von Gastrin. Kurzum, das Hormon bereitet den Darm auf die Ankunft eines Nahrungsbreis vor und signalisiert dem Magen, dass der Nahrungsbrei den Magen verlassen hat. Unterstützt wird Cholecystokinin dabei durch zwei weitere, auch aus dem Duodenum sezernierte Peptidhormone: Sekretin und Gastroinhibitorisches Peptid (GIP). Der Name dieser beiden enteroendokrinen Hormone zeigt bereits ihre Hauptwirkung, Sekretin stimuliert die Sekretion von Verdauungssäften, wirkt also positiv auf die Gallenblase und das exokrine Pankreas, GIP inhibiert die Verdauung im Magen, inhibiert also die Ausschüttung von Gastrin (s. Abb. 1.5).

kap001_abb005

Abb. 1.5 Das Peptidhormon Gastrin wirkt stimulierend auf die Magenaktivität. Die Produktion von Gastrin wird durch das Gastrointestinale Peptid (GIP) und Cholecystokinin (CCK) inhibiert. Gleichzeitig stimuliert CCK die Kontraktion der Gallenblase und die Aktivität des exokrinen Pankreas. Dabei wird es von dem Peptidhormon Sekretin unterstützt. GIP, CCK und Sekretin werden vom Zwölffingerdarm synthetisiert, Gastrin von spezialisierten Magenzellen in der Nähe des Pförtners.

2Umformen von Energie