Details

Mathematical Methods in Survival Analysis, Reliability and Quality of Life


Mathematical Methods in Survival Analysis, Reliability and Quality of Life


, Band 13 1. Aufl.

von: Catherine Huber, Nikolaos Limnios, Mounir Mesbah, Mikhail S. Nikulin

207,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 05.01.2010
ISBN/EAN: 9780470393567
Sprache: englisch
Anzahl Seiten: 420

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

Reliability and survival analysis are important applications of stochastic mathematics (probability, statistics and stochastic processes) that are usually covered separately in spite of the similarity of the involved mathematical theory. This title aims to redress this situation: it includes 21 chapters divided into four parts: Survival analysis, Reliability, Quality of life, and Related topics. Many of these chapters were presented at the European Seminar on Mathematical Methods for Survival Analysis, Reliability and Quality of Life in 2006.
<p><i>Preface 13</i></p> <p><b>PART I 15</b></p> <p><b>Chapter 1. Model Selection for Additive Regression in the Presence of Right-Censoring 17</b><br /> <i>Elodie BRUNEL and Fabienne COMTE</i></p> <p>1.1. Introduction 17</p> <p>1.2. Assumptions on the model and the collection of approximation spaces 18</p> <p>1.2.1. Non-parametric regression model with censored data 18</p> <p>1.2.2. Description of the approximation spaces in the univariate case 19</p> <p>1.2.3. The particular multivariate setting of additive models 20</p> <p>1.3. The estimation method 20</p> <p>1.3.1. Transformation of the data 20</p> <p>1.3.2. The mean-square contrast 21</p> <p>1.4. Main result for the adaptive mean-square estimator 22</p> <p>1.5. Practical implementation 23</p> <p>1.5.1. The algorithm 23</p> <p>1.5.2. Univariate examples 24</p> <p>1.5.3. Bivariate examples 27</p> <p>1.5.4. A trivariate example 28</p> <p>1.6. Bibliography 30</p> <p><b>Chapter 2. Non-parametric Estimation of Conditional Probabilities, Means and Quantiles under Bias Sampling 33</b><br /> <i>Odile PONS</i></p> <p>2.1. Introduction 33</p> <p>2.2. Non-parametric estimation of p 34</p> <p>2.3. Bias depending on the value of Y 35</p> <p>2.4. Bias due to truncation on X 37</p> <p>2.5. Truncation of a response variable in a non-parametric regression model 37</p> <p>2.6. Double censoring of a response variable in a non-parametric model 42</p> <p>2.7. Other truncation and censoring of Y in a non-parametric model 44</p> <p>2.8. Observation by interval 47</p> <p>2.9. Bibliography 48</p> <p><b>Chapter 3. Inference in Transformation Models for Arbitrarily Censored and Truncated Data 49</b><br /> <i>Filia VONTA and Catherine HUBER</i></p> <p>3.1. Introduction 49</p> <p>3.2. Non-parametric estimation of the survival function S 50</p> <p>3.3. Semi-parametric estimation of the survival function S 51</p> <p>3.4. Simulations 54</p> <p>3.5. Bibliography 59</p> <p><b>Chapter 4. Introduction of Within-area Risk Factor Distribution in Ecological Poisson Models 61</b><br /> <i>Lea FORTUNATO, Chantal GUIHENNEUC-JOUYAUX, Dominique LAURIER,Margot TIRMARCHE, Jacqueline CLAVEL and Denis HEMON</i></p> <p>4.1. Introduction 61</p> <p>4.2. Modeling framework 62</p> <p>4.2.1. Aggregated model 62</p> <p>4.2.2. Prior distributions 65</p> <p>4.3. Simulation framework 65</p> <p>4.4. Results 66</p> <p>4.4.1. Strong association between relative risk and risk factor, correlated within-area means and variances (mean-dependent case) 67</p> <p>4.4.2. Sensitivity to within-area distribution of the risk factor 68</p> <p>4.4.3. Application: leukemia and indoor radon exposure 69</p> <p>4.5. Discussion 71</p> <p>4.6. Bibliography 72</p> <p><b>Chapter 5. Semi-Markov Processes and Usefulness in Medicine 75</b><br /> <i>Eve MATHIEU-DUPAS, Claudine GRAS-AYGON and Jean-Pierre DAURES</i></p> <p>5.1. Introduction 75</p> <p>5.2. Methods 76</p> <p>5.2.1. Model description and notation 76</p> <p>5.2.2. Construction of health indicators 79</p> <p>5.3. An application to HIV control 82</p> <p>5.3.1. Context 82</p> <p>5.3.2. Estimation method 82</p> <p>5.3.3. Results: new indicators of health state 84</p> <p>5.4. An application to breast cancer 86</p> <p>5.4.1. Context 86</p> <p>5.4.2. Age and stage-specific prevalence 87</p> <p>5.4.3. Estimation method 88</p> <p>5.4.4. Results: indicators of public health 88</p> <p>5.5. Discussion 89</p> <p>5.6. Bibliography 89</p> <p><b>Chapter 6. Bivariate Cox Models 93</b><br /> <i>Michel BRONIATOWSKI, Alexandre DEPIRE and Ya’acov RITOV</i></p> <p>6.1. Introduction 93</p> <p>6.2. A dependence model for duration data 93</p> <p>6.3. Some useful facts in bivariate dependence 95</p> <p>6.4. Coherence 98</p> <p>6.5. Covariates and estimation 102</p> <p>6.6. Application: regression of Spearman’s rho on covariates 104</p> <p>6.7. Bibliography 106</p> <p><b>Chapter 7. Non-parametric Estimation of a Class of Survival Functionals 109</b><br /> <i>Belkacem ABDOUS</i></p> <p>7.1. Introduction 109</p> <p>7.2. Weighted local polynomial estimates 111</p> <p>7.3. Consistency of local polynomial fitting estimators 114</p> <p>7.4. Automatic selection of the smoothing parameter 116</p> <p>7.5. Bibliography 119</p> <p><b>Chapter 8. Approximate Likelihood in Survival Models 121</b><br /> <i>Henning LAUTER</i></p> <p>8.1. Introduction 121</p> <p>8.2. Likelihood in proportional hazard models 122</p> <p>8.3. Likelihood in parametric models 122</p> <p>8.4. Profile likelihood 123</p> <p>8.4.1. Smoothness classes 124</p> <p>8.4.2. Approximate likelihood function 125</p> <p>8.5. Statistical arguments 127</p> <p>8.6. Bibliography 129</p> <p><b>PART II 131</b></p> <p><b>Chapter 9.Cox Regression with Missing Values of a Covariate having a Non-proportional Effect on Risk of Failure 133</b><br /> <i>Jean-Francois DUPUY and Eve LECONTE</i></p> <p>9.1. Introduction 133</p> <p>9.2. Estimation in the Cox model with missing covariate values: a short review 136</p> <p>9.3. Estimation procedure in the stratified Cox model with missing stratum indicator values 139</p> <p>9.4. Asymptotic theory 141</p> <p>9.5. A simulation study 145</p> <p>9.6. Discussion 147</p> <p>9.7. Bibliography 149</p> <p><b>Chapter 10.Exact Bayesian Variable Sampling Plans for Exponential Distribution under Type-I Censoring 151</b><br /> <i>Chien-Tai LIN, Yen-Lung HUANG and N. BALAKRISHNAN</i></p> <p>10.1. Introduction 151</p> <p>10.2. Proposed sampling plan and Bayes risk 152</p> <p>10.3. Numerical examples and comparison 156</p> <p>10.4. Bibliography 161</p> <p><b>Chapter 11. Reliability of Stochastic Dynamical Systems Applied to Fatigue Crack Growth Modeling 163</b><br /> <i>Julien CHIQUET and Nikolaos LIMNIOS</i></p> <p>11.1. Introduction 163</p> <p>11.2. Stochastic dynamical systems with jump Markov process 165</p> <p>11.3. Estimation 168</p> <p>11.4. Numerical application 170</p> <p>11.5. Conclusion 175</p> <p>11.6. Bibliography 175</p> <p><b>Chapter 12. Statistical Analysis of a Redundant System with One Standby Unit 179</b><br /> <i>Vilijandas BAGDONAVIC¡ IUS, Inga MASIULAITYTE and Mikhail NIKULIN</i></p> <p>12.1. Introduction 179</p> <p>12.2. The models 180</p> <p>12.3. The tests 181</p> <p>12.4. Limit distribution of the test statistics 182</p> <p>12.5. Bibliography 187</p> <p><b>Chapter 13.A Modified Chi-squared Goodness-of-fit Test for the ThreeparameterWeibull</b> <b>Distribution and its Applications in Reliability 189</b><br /> <i>Vassilly VOINOV, Roza ALLOYAROVA and Natalie PYA</i></p> <p>13.1. Introduction 189</p> <p>13.2. Parameter estimation and modified chi-squared tests 191</p> <p>13.3. Power estimation 194</p> <p>13.4. Neyman-Pearson classes 194</p> <p>13.5. Discussion 197</p> <p>13.6. Conclusion 198</p> <p>13.7. Appendix 198</p> <p>13.8. Bibliography 201</p> <p><b>Chapter 14.Accelerated Life Testing when the Hazard Rate Function has Cup Shape 203</b><br /> <i>Vilijandas BAGDONAVIC¡ IUS, Luc CLERJAUD and Mikhail NIKULIN</i></p> <p>14.1. Introduction 203</p> <p>14.2. Estimation in the AFT-GW model 204</p> <p>14.2.1. AFT model 204</p> <p>14.2.2. AFT-Weibull, AFT-lognormal and AFT-GW models 205</p> <p>14.2.3. Plans of ALT experiments 205</p> <p>14.2.4. Parameter estimation: AFT-GW model 206</p> <p>14.3. Properties of estimators: simulation results for the AFT-GW model 207</p> <p>14.4. Some remarks on the second plan of experiments 211</p> <p>14.5. Conclusion 213</p> <p>14.6. Appendix 213</p> <p>14.7. Bibliography 215</p> <p><b>Chapter 15. Point Processes in Software Reliability 217</b><br /> <i>James LEDOUX</i></p> <p>15.1. Introduction 217</p> <p>15.2. Basic concepts for repairable systems 219</p> <p>15.3. Self-exciting point processes and black-box models 221</p> <p>15.4. White-box models and Markovian arrival processes 225</p> <p>15.4.1. A Markovian arrival model 226</p> <p>15.4.2. Parameter estimation 228</p> <p>15.4.3. Reliability growth 232</p> <p>15.5. Bibliography 234</p> <p>PART III 237</p> <p><b>Chapter 16. Likelihood Inference for the Latent Markov Rasch Model 239</b><br /> <i>Francesco BARTOLUCCI, Fulvia PENNONI and Monia LUPPARELLI</i></p> <p>16.1. Introduction 239</p> <p>16.2. Latent class Rasch model 240</p> <p>16.3. Latent Markov Rasch model 241</p> <p>16.4. Likelihood inference for the latent Markov Rasch model 243</p> <p>16.4.1. Log-likelihood maximization 244</p> <p>16.4.2. Likelihood ratio testing of hypotheses on the parameters 245</p> <p>16.5. An application 246</p> <p>16.6. Possible extensions 247</p> <p>16.6.1. Discrete response variables 248</p> <p>16.6.2. Multivariate longitudinal data 248</p> <p>16.7. Conclusions 251</p> <p>16.8. Bibliography 252</p> <p><b>Chapter 17. Selection of Items Fitting a Rasch Model 255</b><br /> <i>Jean-Benoit HARDOUIN and Mounir MESBAH</i></p> <p>17.1. Introduction 255</p> <p>17.2. Notations and assumptions 256</p> <p>17.2.1. Notations 256</p> <p>17.2.2. Fundamental assumptions of the Item Response Theory (IRT) 256</p> <p>17.3. The Rasch model and the multidimensional marginally sufficient Rasch model 256</p> <p>17.3.1. The Rasch model 256</p> <p>17.3.2. The multidimensional marginally sufficient Rasch model 257</p> <p>17.4. The Raschfit procedure 258</p> <p>17.5. A fast version of Raschfit 259</p> <p>17.5.1. Estimation of the parameters under the fixed effects Rasch model 259</p> <p>17.5.2. Principle of Raschfit-fast 260</p> <p>17.5.3. A model where the new item is explained by the same latent trait as the kernel 260</p> <p>17.5.4. A model where the new item is not explained by the same latent trait as the kernel 260</p> <p>17.5.5. Selection of the new item in the scale 261</p> <p>17.6. A small set of simulations to compare Raschfit and Raschfit-fast 261</p> <p>17.6.1. Parameters of the simulation study 261</p> <p>17.6.2. Results and computing time 264</p> <p>17.7. A large set of simulations to compare Raschfit-fast, MSP and HCA/CCPROX 269</p> <p>17.7.1. Parameters of the simulations 269</p> <p>17.7.2. Discussion 270</p> <p>17.8. The Stata module “Raschfit” 270</p> <p>17.9. Conclusion 271</p> <p>17.10.Bibliography 273</p> <p><b>Chapter 18. Analysis of Longitudinal HrQoL using Latent Regression in the Context of Rasch Modeling 275</b><br /> <i>Silvia BACCI</i></p> <p>18.1. Introduction 275</p> <p>18.2. Global models for longitudinal data analysis 276</p> <p>18.3. A latent regression Rasch model for longitudinal data analysis 278</p> <p>18.3.1. Model structure 278</p> <p>18.3.2. Correlation structure 280</p> <p>18.3.3. Estimation 281</p> <p>18.3.4. Implementation with SAS 281</p> <p>18.4. Case study: longitudinal HrQoL of terminal cancer patients 283</p> <p>18.5. Concluding remarks 287</p> <p>18.6. Bibliography 289</p> <p><b>Chapter 19. Empirical Internal Validation and Analysis of a Quality of Life Instrument in French Diabetic Patients during an Educational Intervention 291</b><br /> <i>Judith CHWALOW, Keith MEADOWS, Mounir MESBAH, Vincent COLICHE and Etienne MOLLET</i></p> <p>19.1. Introduction 291</p> <p>19.2. Material and methods 292</p> <p>19.2.1. Health care providers and patients 292</p> <p>19.2.2. Psychometric validation of the DHP 293</p> <p>19.2.3. Psychometric methods 293</p> <p>19.2.4. Comparative analysis of quality of life by treatment group 294</p> <p>19.3. Results 295</p> <p>19.3.1. Internal validation of the DHP 295</p> <p>19.3.2. Comparative analysis of quality of life by treatment group 303</p> <p>19.4. Discussion 304</p> <p>19.5. Conclusion 305</p> <p>19.6. Bibliography 306</p> <p>19.7. Appendices 309</p> <p><b>PART IV 315</b></p> <p><b>Chapter 20. Deterministic Modeling of the Size of the HIV/AIDS Epidemic in Cuba 317</b><br /> <i>Rachid LOUNES, Hector DE ARAZOZA, Y.H. HSIEH and Jose JOANES</i></p> <p>20.1. Introduction 317</p> <p>20.2. The models 319</p> <p>20.2.1. The k2X model 322</p> <p>20.2.2. The k2Y model 322</p> <p>20.2.3. The k2XY model 323</p> <p>20.2.4. The k2 XYX+Y model 324</p> <p>20.3. The underreporting rate 324</p> <p>20.4. Fitting the models to Cuban data 325</p> <p>20.5. Discussion and concluding remarks 326</p> <p>20.6. Bibliography 330</p> <p><b>Chapter 21.Some Probabilistic Models Useful in Sport Sciences 333</b><br /> <i>Leo GERVILLE-REACHE, Mikhail NIKULIN, Sebastien ORAZIO, Nicolas PARIS and Virginie ROSA</i></p> <p>21.1. Introduction 333</p> <p>21.2. Sport jury analysis: the Gauss-Markov approach 334</p> <p>21.2.1. Gauss-Markov model 334</p> <p>21.2.2. Test for non-objectivity of a variable 334</p> <p>21.2.3. Test of difference between skaters 335</p> <p>21.2.4. Test for the less precise judge 336</p> <p>21.3. Sport performance analysis: the fatigue and fitness approach 337</p> <p>21.3.1. Model characteristics 337</p> <p>21.3.2. Monte Carlo simulation 338</p> <p>21.3.3. Results 339</p> <p>21.4. Sport equipment analysis: the fuzzy subset approach 339</p> <p>21.4.1. Statistical model used 340</p> <p>21.4.2. Sensorial analysis step 341</p> <p>21.4.3. Results 342</p> <p>21.5. Sport duel issue analysis: the logistic simulation approach 343</p> <p>21.5.1. Modeling by logistic regression 344</p> <p>21.5.2. Numerical simulations 345</p> <p>21.5.3. Results 345</p> <p>21.6. Sport epidemiology analysis: the accelerated degradation approach 347</p> <p>21.6.1. Principle of degradation in reliability analysis 347</p> <p>21.6.2. Accelerated degradation model 348</p> <p>21.7. Conclusion 350</p> <p>21.8. Bibliography 350</p> <p><b>Appendices 353</b></p> <p>A. European Seminar: Some Figures 353</p> <p>A.1. Former international speakers invited to the European Seminar 353</p> <p>A.2. Former meetings supported by the European Seminar 353</p> <p>A.3. Books edited by the organizers of the European Seminar 354</p> <p>A.4. Institutions supporting the European Seminar (names of colleagues) 355</p> <p><b>B. Contributors 357</b></p> <p><i>Index 367</i></p>
<b>Catherine Huber</b> is an Emeritus professor at Université de Paris René Descartes.  Her research activity concerns nonparametric and semi-parametric theory of statistics and their applications in biology and medicine. She has several publications in particular in the field of survival analysis. She is the co-author and co-editor of several books in the above fields. <p><b>Nikolaos Limnios</b> is a professor at the University of Technology of Compiègne. His research and teaching activities concern stochastic processes, statistical inference and their applications in particular in reliability and survival analysis. He is the co-author and co-editor of several books in the above fields.</p> <p><b>Mounir Mesbah</b> is a professor at the Université Pierre et Marie Curie, Paris 6. His research and teaching activities concern statistics and its applications in health science and medicine (biostatistics). He is the co-author of several articles and co-editor of several books in the above fields.</p> <p><b>Mikhail Nikulin</b> is a professor at the Université Victor Segalen, and a member of the Institute of Mathematics at Bordeaux. His research and teaching activities concern mathematical statistics and its applications in reliability and survival analysis. He is the co-author and co-editor of several books in the above fields.</p>
Reliability and survival analysis are important applications of stochastic mathematics (probability, statistics and stochastic processes) that are usually covered separately in spite of the similarity of the involved mathematical theory. This title aims to redress this situation: it includes 21 chapters divided into four parts: Survival analysis, Reliability, Quality of life, and Related topics. Many of these chapters were presented at the European Seminar on Mathematical Methods for Survival Analysis, Reliability and Quality of Life in 2006.

Diese Produkte könnten Sie auch interessieren:

Modeling Uncertainty
Modeling Uncertainty
von: Moshe Dror, Pierre L'Ecuyer, Ferenc Szidarovszky
PDF ebook
236,81 €
Level Crossing Methods in Stochastic Models
Level Crossing Methods in Stochastic Models
von: Percy H. Brill
PDF ebook
203,29 €
Continuous Bivariate Distributions
Continuous Bivariate Distributions
von: N. Balakrishnan, Chin Diew Lai
PDF ebook
128,39 €