Details

Bioenergy Research


Bioenergy Research

Evaluating Strategies for Commercialization and Sustainability
1. Aufl.

von: Neha Srivastava, Manish Srivastava

145,99 €

Verlag: Wiley
Format: PDF
Veröffentl.: 04.05.2021
ISBN/EAN: 9781119772101
Sprache: englisch
Anzahl Seiten: 336

DRM-geschütztes eBook, Sie benötigen z.B. Adobe Digital Editions und eine Adobe ID zum Lesen.

Beschreibungen

<b>BIOENERGY RESEARCH</b> <p><b>Evaluates challenges and sustainable solutions associated with various biofuel technologies</b><p><i>Bioenergy Research</i> offers an authoritative guide to recent developments in green bioenergy technologies that are currently available including: bioethanol, biobutanol, biomethanol, bio-oil, biohydrogen, biogas and biomethane. The authors provide in-depth analysis and discuss the commercial viability of the various technological advances in bioenergy. Comprehensive in scope, the book explores the environmental, practical and economic implications associated with a variety of bioenergy options. The book also considers the rollback of fossil fuels, the cost and their replacement as well as practical solutions for these issues.<p>This important resource:<ul><li>Presents up-to-date research and industrial developments for various bioenergy options</li><li>Offers comparative evaluation of bioenergy technologies for commercial feasibility</li><li>Reviews current challenges and sustainable solutions for a variety of biofuel technologies</li><li>Contains a review of existing strategies for bioenergy production</li></ul><p><i>Bioenergy Research</i> is a valuable guide for academic researchers and industrial scientists working in the fields of biofuels and bioenergy, environmental science and technology, microbial technology, bioprocess engineering, and waste valorization.
<p>List of Contributors xiii</p> <p>Foreword xvii</p> <p>Acknowledgments xix</p> <p>Biofuels Production Technologies: Recent Advancement xxi</p> <p><b>1 Role of Enzymes in Biofuel Production </b><b>1<br /></b><i>Ashok Kumar Yadav, Surabhi Pandey, Abhishek Dutt Tripathi and Veena Paul</i></p> <p>1.1 Introduction 1</p> <p>1.2 Biofuel Classification 2</p> <p>1.3 Enzymes Role in Biofuels 3</p> <p>1.4 Enzymatic Reaction 4</p> <p>1.5 Enzyme Recovery and Reuse 4</p> <p>1.6 Enzyme Immobilization 4</p> <p>1.6.1 Adsorption on Physical Surface: Physical Adsorption 5</p> <p>1.6.2 Ionic Bonding 5</p> <p>1.6.3 Entanglement or Envelopment 6</p> <p>1.6.4 Cross-Linkage 6</p> <p>1.7 Unique Techniques of Enzyme Immobilization 6</p> <p>1.8 Application of Various Enzymes in Biofuel Production 6</p> <p>1.8.1 Amylases 6</p> <p>1.8.2 Proteases 7</p> <p>1.8.3 Dehydrogenases 7</p> <p>1.8.4 Lipase 8</p> <p>1.9 Biofuel Production Process 8</p> <p>1.9.1 Bioethanol 8</p> <p>1.9.2 Biohydrogen 11</p> <p>1.9.3 Biomethane 11</p> <p>1.9.4 Biodiesel 12</p> <p>1.10 Production of Biodiesel by Enzymatic Catalysis 14</p> <p>1.10.1 Batch Method 15</p> <p>1.10.2 Continuous Stirred-Tank Method 15</p> <p>1.10.3 Packed-Bed Columns 15</p> <p>1.11 Future Prospects 16</p> <p>1.12 Conclusion 16</p> <p>References 17</p> <p><b>2 Microbial Technology for Biofuel Production </b><b>19<br /></b><i>Spriha Raven, Sashita Bindu Ekka, Stephen Edward Chattree, Shivani Smita Sadanand, Lipi Rina and Archana Tiwari</i></p> <p>2.1 Introduction 19</p> <p>2.2 Microbial Biofuel 20</p> <p>2.3 Microbial Pathway for Biofuel Production 21</p> <p>2.3.1 Sugar Conversion to Alcohols/Glycolytic Pathway 21</p> <p>2.3.2 Butanol Synthetic Pathway/ABE Pathway 21</p> <p>2.3.3 2-Keto Acid Pathways for Alcohols 22</p> <p>2.3.4 2-Keto Acid Pathway for Iso-Butanol 22</p> <p>2.3.5 Protein into Alcohol 22</p> <p>2.4 Algal Biofuel Production 22</p> <p>2.4.1 Microalgal Cultivation 23</p> <p>2.4.2 Microalgae Harvesting 25</p> <p>2.4.3 Conversion Techniques for Algal Biofuel Production 25</p> <p>2.4.3.1 Thermochemical Conversion 25</p> <p>2.4.3.2 Biochemical Conversion 27</p> <p>2.4.3.3 Transesterification (or Chemical Conversion) 28</p> <p>2.4.3.4 Photosynthetic Microbial Fuel Cell 28</p> <p>2.5 Bioethanol 28</p> <p>2.6 Biodiesel 29</p> <p>2.6.1 Stages of Biodiesel Production 31</p> <p>2.6.1.1 Cultivation 31</p> <p>2.6.1.2 Harvesting/Dewatering 32</p> <p>2.6.1.3 Oil Extraction 32</p> <p>2.6.1.4 Conversion 33</p> <p>2.7 Biohydrogen 33</p> <p>2.7.1 Stages of Biohydrogen Production 34</p> <p>2.7.1.1 Biophotolysis 34</p> <p>2.7.1.2 Photo Fermentation 36</p> <p>2.7.1.3 Dark Fermentation 36</p> <p>2.7.1.4 Two-Step Process (a Combination of Photo and Dark Fermentation) 37</p> <p>2.8 Applications of Biofuel Production 38</p> <p>2.8.1 In Aviation 39</p> <p>2.8.2 Maritime Industry 39</p> <p>2.8.3 Heat 39</p> <p>2.8.4 Backup Systems 39</p> <p>2.8.5 Cleaning Oil Spills 39</p> <p>2.8.6 Microalgae Applications 39</p> <p>2.9 Conclusion 40</p> <p>References 40</p> <p><b>3 Biohydrogen Production from Cellulosic Waste Biomass </b><b>47<br /></b><i>Enosh Phillips</i></p> <p>3.1 Introduction 47</p> <p>3.2 History of Hydrogen Fuel 48</p> <p>3.3 Biohydrogen Fuel Cell 48</p> <p>3.4 Cellulosic Biohydrogen Production from Waste Biomass 50</p> <p>3.4.1 Biohydrogen Production from Wheat Straw and Wheat Bran 51</p> <p>3.4.2 Biohydrogen Production from Corn Stalk 54</p> <p>3.4.3 Biohydrogen from Rice Straw and Rice Bran 55</p> <p>3.4.4 Biohydrogen Production from Food Waste 57</p> <p>3.4.5 Biohydrogen from Bagasse 58</p> <p>3.4.6 Biohydrogen Production from Mushroom CultivationWaste 60</p> <p>3.4.7 Biohydrogen Production from Sweet Potato Starch Residue 61</p> <p>3.4.8 Biohydrogen from De-Oiled Jatropha 61</p> <p>3.4.9 Biohydrogen Production Banyan Leaves and Maize Leaves 62</p> <p>3.5 Conclusion 62</p> <p>References 64</p> <p><b>4 Strategies for Obtaining Biofuels Through the Fermentation of C5-Raw Materials: Part 1 </b><b>69<br /></b><i>Alexandre S. Santos, Lílian A. Pantoja, Mayara C. S. Barcelos, Kele A. C. Vespermann and Gustavo Molina</i></p> <p>4.1 The Nature of Pentoses 69</p> <p>4.2 Alcoholic Fermentation of C5 71</p> <p>4.3 Lipid Biosynthesis from C5 79</p> <p>4.4 Conclusion 82</p> <p>References 82</p> <p><b>5 Strategies for Obtaining Biofuels Through the Fermentation of C5-Raw Materials: Part 2 </b><b>85<br /></b><i>Alexandre Soares dos Santos, Lílian Pantoja, Kele A. C. Vespermann, Mayara C. S. Barcelos and Gustavo Molina</i></p> <p>5.1 Introduction 85</p> <p>5.2 Ethanol Production Using C5-Fermenter Strain 86</p> <p>5.2.1 Pentose-Fermenting Microorganisms 86</p> <p>5.3 Microbial Lipid Production by C5-Fermenter Strains for Biofuel Advances 90</p> <p>5.4 Concluding Remarks 96</p> <p>References 96</p> <p><b>6 An Overview of Microalgal Carotenoids: Advances in the Production and Its Impact on Sustainable Development </b><b>105<br /></b><i>Rahul Kumar Goswami, Komal Agrawal and Pradeep Verma</i></p> <p>6.1 Introduction 105</p> <p>6.1.1 Interaction and Understanding of Carotenoid 106</p> <p>6.1.2 Differentiation between Natural or Chemically Synthesized Carotenoids 106</p> <p>6.2 Diverse Category of Carotenoids 107</p> <p>6.2.1 β-Carotene 107</p> <p>6.2.2 Lutein 107</p> <p>6.2.3 Astaxanthin 108</p> <p>6.2.4 Canthaxanthin 108</p> <p>6.3 Microalgae Prospects for the Production of Carotenoids 109</p> <p>6.3.1 Bio-Formation of Carotenoids inside Microalgae/Carotenogenesis inside Microalgae Cells 110</p> <p>6.3.2 Potent Microalgae Strain for Carotenoid Production 111</p> <p>6.3.2.1 <i>Haematococcus pluvialis </i>112</p> <p>6.3.2.2 <i>Dunaliella salina. </i>113</p> <p>6.3.2.3 Other Microalgae Species Used for the Production of Carotenoids 113</p> <p>6.3.3 Enhancement of Carotenoid Productivity by Optimizing Various Physiological Condition/Physiological Approaches for Enhancement of Carotenoid Production inside Microalga Cells 115</p> <p>6.3.3.1 Role of Nutrient Deficient Stress for Carotenogenesis 115</p> <p>6.3.3.2 Lights and Temperature Stress for Induction of Carotenogenesis 116</p> <p>6.3.3.3 Role of Oxidative Stress in Carotenogenesis 116</p> <p>6.3.3.4 Approaches which Enhance Carotenogenesis by Heterotrophic and Mixotrophic Cultivation of Microalgae 117</p> <p>6.3.3.5 Cohesive Cultivation System in Microalgae for Enhancement of Carotenoid 117</p> <p>6.3.4 Metabolic and Genetic Modification in Microalgae for Enhancement of Carotenoid Production 118</p> <p>6.4 Significance of Carotenoid in Human Health 119</p> <p>6.4.1 Anti-Inflammatory and Antioxidant Properties 119</p> <p>6.4.2 Anticancerous Activity and their Potential of a Generation of an Immune Response 119</p> <p>6.4.3 As Provitamin 121</p> <p>6.4.4 Other Significance of Microalgae Carotenoids 121</p> <p>6.5 Opportunities and Challenges in Carotenoid Production 121</p> <p>6.6 Present Drifts and Future Prospects 122</p> <p>6.7 Conclusion 123</p> <p>References 123</p> <p><b>7 Microbial Xylanases: A Helping Module for the Enzyme Biorefinery Platform </b><b>129<br /></b><i>Nisha Bhardwaj and Pradeep Verma</i></p> <p>7.1 Introduction 129</p> <p>7.2 Raw Material for Biorefinery 130</p> <p>7.3 Structure of Lignocellulosic Plant Biomass 132</p> <p>7.4 The Concept of Biorefinery 132</p> <p>7.5 Role of Enzymes in Biorefinery 134</p> <p>7.5.1 In Biological Pretreatment 134</p> <p>7.5.2 In Enzymatic Hydrolysis 135</p> <p>7.6 Enzyme Synergy: A Conceptual Strategy 136</p> <p>7.7 Factors Affecting Biological Pretreatment 137</p> <p>7.8 Advantages of Xylanases from Thermophilic Microorganisms in Biorefinery 138</p> <p>7.9 The Products of Biorefinery 138</p> <p>7.9.1 Bioethanol 138</p> <p>7.9.2 Biobutanol 141</p> <p>7.9.3 Hydrogen 142</p> <p>7.10 Molecular Aspects of Enzymes in Biorefinery 142</p> <p>7.11 Conclusion 143</p> <p>References 143</p> <p><b>8 Microbial Cellulolytic-Based Biofuel Production </b><b>153<br /></b><i>S.M. Bhatt</i></p> <p>8.1 Introduction 153</p> <p>8.2 Biofuel Classifications 153</p> <p>8.2.1 Generations of Biofuel 153</p> <p>8.2.2 Bioethanol Production Using Lignocellulose 154</p> <p>8.2.2.1 Polymeric Lignocellulosic Composition 157</p> <p>8.3 Bioprocessing of Bagasse for Bioethanol Production 157</p> <p>8.3.1 Enzymatic Hydrolysis and Cellulose Structure 159</p> <p>8.3.1.1 Cellulolytic Microbes 159</p> <p>8.4 Microbial Cellulase 160</p> <p>8.5 Mode of Economical Production of Enzyme 161</p> <p>8.6 Structure of Cellulase 163</p> <p>8.6.1 CBH1 Structure 164</p> <p>8.6.2 Thermophilic Cellulase Enzyme 164</p> <p>8.7 Family Classification 164</p> <p>8.8 Consortia-Based Cellulase Production 165</p> <p>8.9 Cellulase Production SSF Mode 165</p> <p>8.10 Concluding Remarks 166</p> <p>Declarations 166</p> <p>Acknowledgment 166</p> <p>References 166</p> <p><b>9 Recent Developments of Bioethanol Production </b><b>175<br /></b><i>Arla Sai Kumar, Sana Siva Sankar, S K Godlaveeti, Dinesh Kumar, S Dheiver, Ram</i></p> <p><i>Prasad, Chandrasekhar Nb, Thi Hong Chuong Nguyen and Quyet Van Le</i></p> <p>9.1 Introduction 175</p> <p>9.2 Emerging Techniques in Bioethanol Production 178</p> <p>9.3 Advancement in Distillation and Waste-Valorization Techniques 179</p> <p>9.3.1 Heat Integrated Distillation 179</p> <p>9.3.2 Membrane Technology 180</p> <p>9.3.2.1 Membrane-Assisted Vapor Stripping 180</p> <p>9.3.2.2 Combining Extractive and Azeotropic Distillation 180</p> <p>9.3.2.3 Feed-Splitting 182</p> <p>9.3.2.4 Ohmic-Assisted Hydro Distillation (OADH) 182</p> <p>9.4 Green Extraction of Bioactive Products 182</p> <p>9.4.1 Pulsed Electric Fields (PFE) 183</p> <p>9.4.2 High-Voltage Electrical Discharges 184</p> <p>9.4.3 Enzyme-Assisted Extraction 184</p> <p>9.4.4 Ultrasound-Assisted Extraction 187</p> <p>9.4.5 Microwave-Assisted Extraction 188</p> <p>9.4.6 Subcritical Fluid Extraction 188</p> <p>9.4.7 Ohmic-Assisted Extraction 188</p> <p>9.5 Advancement in Bioethanol Production from Microalgae 188</p> <p>9.5.1 Surface Methods 188</p> <p>9.5.2 Ligno Celluloic Bio Ethanol Production 189</p> <p>9.5.2.1 Membrane Technology 189</p> <p>9.5.2.2 Microbial Technique 191</p> <p>9.5.2.3 Brown Algae 191</p> <p>9.5.2.4 Integrated Processes 191</p> <p>9.5.2.5 Advances in Bioethanol Production from Agroindustrial Waste 192</p> <p>9.6 Fermentation Technique Advances 192</p> <p>9.6.1 Synthesis from Municipal Wastes 193</p> <p>9.6.1.1 Waste Paper 193</p> <p>9.6.1.2 Coffee Residue 194</p> <p>9.6.1.3 Food Waste 194</p> <p>9.6.1.4 Solid Waste 195</p> <p>9.7 Conclusion 196</p> <p>References 198</p> <p><b>10 Algal Biofuels – Types and Production Technologies </b><b>209<br /></b><i>Sreedevi Sarsan and K. Vindhya Vasini Roy</i></p> <p>10.1 Introduction 209</p> <p>10.2 Algal Biofuels 210</p> <p>10.3 Production of Algal Biofuels 211</p> <p>10.3.1 Algae Cultivation Systems 211</p> <p>10.3.1.1 Cultivation of Macroalgae 212</p> <p>10.3.1.2 Cultivation of Microalgae 214</p> <p>10.3.2 Harvesting of Algae 220</p> <p>10.3.2.1 Harvesting of Macroalgae 220</p> <p>10.3.2.2 Harvesting of Microalgae 220</p> <p>10.3.3 Drying 222</p> <p>10.3.4 Cell Disruption 222</p> <p>10.3.5 Conversion into Biofuel 223</p> <p>10.4 Types of Algal Biofuels 223</p> <p>10.4.1 Biodiesel 224</p> <p>10.4.2 Bioethanol 226</p> <p>10.4.3 Biogas/Biomethane 228</p> <p>10.4.4 Biomethanol 230</p> <p>10.4.5 Biobutanol 230</p> <p>10.4.6 Biohydrogen 230</p> <p>10.4.7 Biosyngas 231</p> <p>10.4.8 Green Diesel 231</p> <p>10.5 Advantages of Algal Biofuels 232</p> <p>10.5.1 Ease of Growth 232</p> <p>10.5.2 Impact on Food 232</p> <p>10.5.3 Environmental Impact 233</p> <p>10.5.4 Algal by Products 234</p> <p>10.5.5 Economic Benefits 234</p> <p>10.6 Limitations 234</p> <p>10.7 Conclusion 235</p> <p>References 235</p> <p><b>11 Biomethane Production and Advancement </b><b>245<br /></b><i>Rajeev Singh, P K Mishra, Neha Srivastava, Akshay Shrivastav and K R Srivastava</i></p> <p>11.1 Introduction 245</p> <p>11.1.1 Process Involved in Biomethane Production 247</p> <p>11.1.2 Purification of Biogas for Methane Production 249</p> <p>11.2 Advancement Undergoing in the Process of Methane Production 250</p> <p>11.2.1 Adsorption by Pressure Swing 250</p> <p>11.3 Adsorption Methods 251</p> <p>11.4 Separation by Membrane 251</p> <p>11.5 Cryogenic Separation 252</p> <p>11.6 Biological Technique for Purification of Biogas 252</p> <p>11.6.1 Advantage and Limitation of Biomethane Production 252</p> <p>11.6.2 Conclusion 253</p> <p>References 254</p> <p><b>12 Biodiesel Production and Advancement from Diatom Algae </b><b>261<br /></b><i>Abhishek Saxena and Archana Tiwari</i></p> <p>12.1 Introduction 261</p> <p>12.2 Diatom Algae as a Source of Lipids 262</p> <p>12.3 Biodiesel Production from Diatoms 265</p> <p>12.4 Innovative Approaches toward Enhancement in Biodiesel Production and Challenges 267</p> <p>12.5 Advancements in Diatoms-Based Biodiesel Production 269</p> <p>12.6 Conclusion 270</p> <p>Acknowledgments 272</p> <p>References 272</p> <p><b>13 Biobutanol Production and Advancement </b><b>279<br /></b><i>Enosh Phillips</i></p> <p>13.1 Introduction 279</p> <p>13.2 Biobutanol 279</p> <p>13.3 ABE Process for Biobutanol Production 281</p> <p>13.4 Biobutanol Production by ABE 282</p> <p>13.5 Substrate Used in Biobutanol Production 283</p> <p>13.6 Advancement in Pretreatment Method 284</p> <p>13.7 Microbial Engineering for Production Enhancement 284</p> <p>13.8 Conclusion 285</p> <p>Acknowledgment 286</p> <p>References 286</p> <p>Index 291</p>
<p><b>Neha Srivastava</b> is a Research Scientist in the Department of Chemical Engineering and Technology, Indian Institute of Technology, Varanasi, India.</p><p><b>Manish Srivastava</b> is a SERB-Research Scientist in the Department of Chemical Engineering and Technology, Indian Institute of Technology, Varanasi, India.</p>
<p><b>Evaluates challenges and sustainable solutions associated with various biofuel technologies</b></p><p><i>Bioenergy Research</i> offers an authoritative guide to recent developments in green bioenergy technologies that are currently available including: bioethanol, biobutanol, biomethanol, bio-oil, biohydrogen, biogas and biomethane. The authors provide in-depth analysis and discuss the commercial viability of the various technological advances in bioenergy. Comprehensive in scope, the book explores the environmental, practical and economic implications associated with a variety of bioenergy options. The book also considers the rollback of fossil fuels, the cost and their replacement as well as practical solutions for these issues.</p><p>This important resource:</p><ul><li>Presents up-to-date research and industrial developments for various bioenergy options</li><li>Offers comparative evaluation of bioenergy technologies for commercial feasibility</li><li>Reviews current challenges and sustainable solutions for a variety of biofuel technologies</li><li>Contains a review of existing strategies for bioenergy production</li></ul><p><i>Bioenergy Research</i> is a valuable guide for academic researchers and industrial scientists working in the fields of biofuels and bioenergy, environmental science and technology, microbial technology, bioprocess engineering, and waste valorization.</p>

Diese Produkte könnten Sie auch interessieren:

Chemistry for the Protection of the Environment 4
Chemistry for the Protection of the Environment 4
von: Robert Mournighan, Marzenna R. Dudzinska, John Barich, Marjorie A. Gonzalez, Robin K. Black
PDF ebook
213,99 €
Wörterbuch Labor / Laboratory Dictionary
Wörterbuch Labor / Laboratory Dictionary
von: Klaus Roth, Theodor C.H. Cole
PDF ebook
36,99 €